Back to Search Start Over

Curving Origami with Mechanical Frustration

Authors :
Frederic Lechenault
Théo Jules
Mokhtar Adda-Bedia
Laboratoire de Physique de l'ENS Lyon (Phys-ENS)
École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon
Mécanique, Matière Molle, Morphogénèse
Laboratoire de physique de l'ENS - ENS Paris (LPENS)
Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023))
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL
Source :
Extreme Mechanics Letters, Extreme Mechanics Letters, Elsevier, 2021, 46, pp.101315. ⟨10.1016/j.eml.2021.101315⟩, Extreme Mechanics Letters, 2021, 46, pp.101315. ⟨10.1016/j.eml.2021.101315⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We study the three-dimensional equilibrium shape of a shell formed by a deployed accordion-like origami, made from an elastic sheet decorated by a series of parallel creases crossed by a central longitudinal crease. Surprisingly, while the imprinted crease network does not exhibit a geodesic curvature, the emergent structure is characterized by an effective curvature produced by the deformed central fold. Moreover, both finite element analysis and manually made mylar origamis show a robust empirical relation between the imprinted crease network's dimensions and the apparent curvature. A detailed examination of this geometrical relation shows the existence of three typical elastic deformations, which in turn induce three distinct types of morphogenesis. We characterize the corresponding kinematics of crease network deformations and determine their phase diagram. Taking advantage of the frustration caused by the competition between crease stiffness and kinematics of crease network deformations, we provide a novel tool for designing curved origami structures constrained by strong geometrical properties.<br />Comment: Article: 6 pages 6 figures. Supplementary Materials: 4 pages 3 figures. Submitted to Extreme Mechanics Letters

Details

Language :
English
ISSN :
23524316
Database :
OpenAIRE
Journal :
Extreme Mechanics Letters, Extreme Mechanics Letters, Elsevier, 2021, 46, pp.101315. ⟨10.1016/j.eml.2021.101315⟩, Extreme Mechanics Letters, 2021, 46, pp.101315. ⟨10.1016/j.eml.2021.101315⟩
Accession number :
edsair.doi.dedup.....1e228d99a5a13d8f10bc4bbe0fbaddf1
Full Text :
https://doi.org/10.1016/j.eml.2021.101315⟩