Back to Search Start Over

ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS

Authors :
Martín Huarte-Espinosa
Andrea Ciardi
Adam Frank
Patrick Hartigan
Sergey Lebedev
Jeremy Chittenden
Eric G. Blackman
Instituto de Ciencias Nucleares [Mexico]
Universidad Nacional Autónoma de México (UNAM)
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS)
Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
École normale supérieure - Paris (ENS-PSL)
Source :
The Astrophysical Journal, The Astrophysical Journal, American Astronomical Society, 2012, 757 (1), pp.66. ⟨10.1088/0004-637X/757/1/66⟩, The Astrophysical Journal, 2012, 757 (1), pp.66. ⟨10.1088/0004-637X/757/1/66⟩
Publication Year :
2012
Publisher :
American Astronomical Society, 2012.

Abstract

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic-energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch (MCL) models, magnetic fields dominate only at scales $\lesssim 100$ engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform 3-D ideal MHD AMR simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.<br />16 pages, 11 figures, published in ApJ: ApJ, 757, 66

Details

ISSN :
15384357 and 0004637X
Volume :
757
Database :
OpenAIRE
Journal :
The Astrophysical Journal
Accession number :
edsair.doi.dedup.....1ddda3d9e71b63ef60e5b293571a687d
Full Text :
https://doi.org/10.1088/0004-637x/757/1/66