Back to Search
Start Over
TAPAS: A Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis
- Publication Year :
- 2019
- Publisher :
- Cold Spring Harbor Laboratory, 2019.
-
Abstract
- Total brain white matter lesion (WML) volume is the most widely established magnetic resonance imaging (MRI) outcome measure in studies of multiple sclerosis (MS). To estimate WML volume, there are a number of automatic segmentation methods, yet, manual delineation remains the gold standard approach. These approaches often yield a probability map to which a threshold is applied to create lesion segmentation masks. Unfortunately, few approaches systematically determine the threshold employed; many methods use a manually selected threshold, thus introducing human error and bias into the automated procedure. In this study, we propose and validate an automatic thresholding algorithm, Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis (TAPAS), to obtain subject-specific threshold estimates for probability map automatic segmentation of T2-weighted (T2) hyperintense WMLs. Using multimodal MRI, the proposed method applies an automatic segmentation algorithm to obtain probability maps. We obtain the true subject-specific threshold that maximizes Sørensen-Dice Similarity Coefficient (DSC). Then the subject-specific thresholds are modeled on a naive estimate of volume using a general additive model. Applying this model, we predict a subject-specific threshold in data not used for training. We ran a Monte Carlo-resampled split-sample cross-validation (100 validation sets) using two data sets: the first obtained from the Johns Hopkins Hospital (JHH) on a Philips 3 Tesla (3T) scanner (n = 94) and a second collected at the Brigham and Women’s Hospital (BWH) using a Siemens 3T scanner (n = 40). By means of the proposed automated technique, in the JHH data, we found an average reduction in subject-level absolute error of 0.1 mL per one mL increase in manual volume. Using Bland-Altman analysis, we found that volumetric bias associated with group-level thresholding is mitigated when applying TAPAS. The BWH data showed similar absolute error estimates using group-level thresholding or TAPAS likely since Bland-Altman analyses indicate no systematic biases associated with group or TAPAS volume estimates. The current study presents the first validated fully automated method for subject-specific threshold prediction to segment brain lesions.
- Subjects :
- Similarity (geometry)
medicine.diagnostic_test
business.industry
Computer science
Magnetic resonance imaging
Pattern recognition
Gold standard (test)
Thresholding
030218 nuclear medicine & medical imaging
Reduction (complexity)
03 medical and health sciences
0302 clinical medicine
Approximation error
medicine
Artificial intelligence
business
030217 neurology & neurosurgery
Volume (compression)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....1dbef5b8108152d536400ee99810a0fc
- Full Text :
- https://doi.org/10.1101/609156