Back to Search Start Over

Error Estimation of Polynomial Chaos Approximations in Transient Structural Dynamics

Authors :
Eric Florentin
Quentin Serra
T. Dao
Sébastien Berger
Dynamique interactions vibrations Structures (DivS)
Laboratoire de Mécanique Gabriel Lamé (LaMé)
Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)-Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)
Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)
Source :
International Journal of Computational Methods, International Journal of Computational Methods, World Scientific Publishing, 2020, 17 (10), ⟨10.1142/S0219876220500036⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Usually, within stochastic framework, a testing dataset is used to evaluate the approximation error between a surrogate model (e.g. a Polynomial Chaos expansion) and the exact model. We propose here another method to estimate the quality of an approximated solution of a stochastic process, within the context of structural dynamics. We demonstrate that the approximation error is governed by an equation based on the residue of the approximate solution. This problem can be solved numerically using an approximated solution, here a coarse Monte Carlo simulation. The developed estimate is compared to a reference solution on a simple case. The study of this comparison makes it possible to validate the efficiency of the proposed method. This validation has been observed using different sets of simulations. To illustrate the applicability of the proposed approach to a more challenging problem, we also present a problem with a large number of random parameters. This illustration shows the interest of the method compared to classical estimates.

Details

Language :
English
ISSN :
02198762
Database :
OpenAIRE
Journal :
International Journal of Computational Methods, International Journal of Computational Methods, World Scientific Publishing, 2020, 17 (10), ⟨10.1142/S0219876220500036⟩
Accession number :
edsair.doi.dedup.....1db04e09a86db7317fd11bc257011a9a
Full Text :
https://doi.org/10.1142/S0219876220500036⟩