Back to Search
Start Over
A new geometrical perspective on Bohr-equivalence of exponential polynomials
- Source :
- RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
- Publication Year :
- 2021
- Publisher :
- Springer Nature, 2021.
-
Abstract
- Based on Bohr’s equivalence relation for general Dirichlet series, in this paper we connect the families of equivalent exponential polynomials with a geometrical point of view related to lines in crystal-like structures. In particular we characterize this equivalence relation, and give an alternative proof of Bochner’s property referring to these functions, through this new geometrical perspective. The first author’s research was partially supported by PGC2018-097960-B-C22 (MCIU/AEI/ERDF, UE).
- Subjects :
- Pure mathematics
Property (philosophy)
01 natural sciences
Exponential polynomial
symbols.namesake
Perspective (geometry)
0103 physical sciences
Equivalence relation
Exponential polynomials
Point (geometry)
Bohr’s equivalence relation
0101 mathematics
Functions of a complex variable
Equivalence (measure theory)
Mathematical Physics
Mathematics
Análisis Matemático
Algebra and Number Theory
010102 general mathematics
Bohr’s equivalence theorem
Crystal-like structure
Bohr model
symbols
Exponential sums
010307 mathematical physics
General Dirichlet series
Analysis
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
- Accession number :
- edsair.doi.dedup.....1dae943a363662d3b8f0ae493e20b45f