Back to Search Start Over

Realization of macroscopic ratchet effect based on nonperiodic and uneven potentials

Authors :
J. L. Vicent
Elvira M. Gonzalez
M. C. de Ory
M. Menghini
V. Rollano
María Vélez
Alicia Gomez
Álvaro Muñoz-Noval
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
European Commission
Ministerio de Economía y Competitividad (España)
Comunidad de Madrid
Centros de Excelencia Severo Ochoa, INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN NANOCIENCIA, SEV-2016-0686
Agencia Estatal de Investigación (AEI)
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-8 (2021), DIGITAL.INTA Repositorio Digital del Instituto Nacional de Técnica Aeroespacial, instname, Digital.CSIC. Repositorio Institucional del CSIC, E-Prints Complutense. Archivo Institucional de la UCM, Repositorio Institucional del Instituto Madrileño de Estudios Avanzados en Nanociencia, RUO. Repositorio Institucional de la Universidad de Oviedo, Scientific Reports
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Ratchet devices allow turning an ac input signal into a dc output signal. A ratchet device is set by moving particles driven by zero averages forces on asymmetric potentials. Hybrid nanostructures combining artificially fabricated spin ice nanomagnet arrays with superconducting films have been identified as a good choice to develop ratchet nanodevices. In the current device, the asymmetric potentials are provided by charged Néel walls located in the vertices of spin ice magnetic honeycomb array, whereas the role of moving particles is played by superconducting vortices. We have experimentally obtained ratchet effect for different spin ice I configurations and for vortex lattice moving parallel or perpendicular to magnetic easy axes. Remarkably, the ratchet magnitudes are similar in all the experimental runs; i. e. different spin ice I configurations and in both relevant directions of the vortex lattice motion. We have simulated the interplay between vortex motion directions and a single asymmetric potential. It turns out vortices interact with uneven asymmetric potentials, since they move with trajectories crossing charged Néel walls with different orientations. Moreover, we have found out the asymmetric pair potentials which generate the local ratchet effect. In this rocking ratchet the particles (vortices) on the move are interacting each other (vortex lattice); therefore, the ratchet local effect turns into a global macroscopic effect. In summary, this ratchet device benefits from interacting particles moving in robust and topological protected type I spin ice landscapes.<br />This work was supported by Spanish MICINN grants FIS2016-76058 (AEI/FEDER, UE), EU COST- CA16218. IMDEA Nanociencia acknowledges support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (MICINN, Grant SEV-2016-0686). MCO and AG acknowledges financial support from Spanish MICINN Grant ESP2017-86582-C4-1-R and IJCI-2017-33991; AMN acknowledges financial support from Spanish CAM Grant 2018-T1/IND-10360. MV acknowledges financial support from Spanish MICINN Grant PID2019-104604RB/AEI/10.13039/50110001103.

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....1d6adc57a96a1a1f299b015841f1c815