Back to Search Start Over

Uukuniemi virus maturation: immunofluorescence microscopy with monoclonal glycoprotein-specific antibodies

Authors :
R F Pettersson
B Bång
E Kuismanen
M Hurme
Source :
Journal of virology. 51(1)
Publication Year :
1984

Abstract

Monoclonal antibodies directed against Uukuniemi virus glycoproteins G1 and G2 in combination with polyclonal antibodies against the nucleoprotein (N) were used to study the maturation of the virus in Golgi complexes of infected chicken embryo fibroblasts and BHK cells. Of 25 monoclonal antibodies obtained, 10 were shown to be G1 specific and 15 were shown to be G2 specific by immunoblotting and immunoprecipitation. In double-staining experiments, some of the monoclonal antibodies gave similar distributions of fluorescence as compared with the staining obtained from polyclonal rabbit anti-G1-G2 antibodies. Others, however, preferentially stained either the glycoproteins in the Golgi complex or those at the cell surface. This may indicate that the glycoproteins underwent conformational changes during their transport. Uukuniemi virus infection resulted in the vacuolization of the membranes of Golgi complexes where the maturation of the virus was taking place. Double-staining experiments with monoclonal antibodies which preferentially stained the Golgi-associated viral glycoproteins and with anti-N polyclonal rabbit antiserum showed a correlation between the progressive vacuolization of the Golgi complex and the accumulation of viral nucleoprotein in the Golgi region, suggesting that a morphological alteration of the Golgi complex may be a prerequisite for intracellular maturation of the virus. Treatment of Uukuniemi virus-infected cells with tunicamycin, a drug which inhibits N-linked glycosylation, resulted in the accumulation of both glycoproteins at an intracellular location, apparently representing the endoplasmic reticulum. Double-staining experiments showed a parallel accumulation of nucleoprotein at these sites, indicating that local accumulation of glycoproteins is required for nucleoprotein binding to intracellular membranes.

Details

ISSN :
0022538X
Volume :
51
Issue :
1
Database :
OpenAIRE
Journal :
Journal of virology
Accession number :
edsair.doi.dedup.....1d6947a100478194a305f7699c5722ee