Back to Search Start Over

Boosting performance in machine learning of geophysical flows via scale separation

Authors :
C. G. Ngoungue Langue
Soulivanh Thao
Flavio Maria Emanuele Pons
Giulia Carella
Pascal Yiou
Davide Faranda
Adnane Hamid
Mathieu Vrac
Valerie Gautard
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
London Mathematical Laboratory
Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Source :
Nonlinear Processes in Geophysics, Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 2020, ⟨10.5194/npg-2020-39⟩
Publication Year :
2020
Publisher :
Copernicus GmbH, 2020.

Abstract

Recent advances in statistical and machine learning have opened the possibility to forecast the behavior of chaotic systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical flows, known to involve multiple scales in length, time and energy and to feature intermittency. We show that both multiscale dynamics and intermittency introduce severe limitations on the applicability of recurrent neural networks, both for short-term forecasts, as well as for the reconstruction of the underlying attractor. We suggest that possible strategies to overcome such limitations should be based on separating the smooth large-scale dynamics from the intermittent/small-scale features. We test these ideas on global sea-level pressure data for the past 40 years, a proxy of the atmospheric circulation dynamics. Better short and long term forecasts of sea-level pressure data can be obtained with an optimal choice of spatial coarse grain and time filtering.

Details

ISSN :
10235809 and 16077946
Database :
OpenAIRE
Journal :
Nonlinear Processes in Geophysics, Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 2020, ⟨10.5194/npg-2020-39⟩
Accession number :
edsair.doi.dedup.....1d55682810d81a3e3e1d7050979248bf