Back to Search
Start Over
Inhalation of Hydrogen of Different Concentrations Ameliorates Spinal Cord Injury in Mice by Protecting Spinal Cord Neurons from Apoptosis, Oxidative Injury and Mitochondrial Structure Damages
- Source :
- Cellular Physiology and Biochemistry, Vol 47, Iss 1, Pp 176-190 (2018)
- Publication Year :
- 2017
-
Abstract
- Background/Aims: Hydrogen selectively neutralizes reactive oxygen species (ROS) and ameliorates various ROS-induced injuries. Spinal cord injury (SCI) is a serious injury to the central nervous system, and secondary SCI is closely related to excessive ROS generation. We hypothesized that hydrogen inhalation ameliorates SCI, and the mechanism of action may be related to the protective effects of hydrogen against oxidative stress, apoptosis, and mitochondrial damage. Methods: Mechanically injured spinal cord neurons were incubated with different concentrations of hydrogen in vitro. Immunofluorescence staining and transmission electron microscopy were used to confirm the protective effects of hydrogen. ROS and related proteins were detected with dihydroethidium fluorescence staining, enzyme-linked immunosorbent assays, and western blotting. Terminal deoxynucleotidyl transferase dUTP nick end labeling assays, flow cytometry, and western blotting were used to detect neuronal apoptosis. ATP concentrations, Janus Green B staining, and mitochondrial permeability transition pore (mPTP) status were assessed to investigate mitochondrial damage. RNA sequencing was performed to screen potential target genes of hydrogen application. Hydrogen was administered to mice after spinal cord contusion injury was established for 42 days. The Basso Mouse Scale (BMS) and footprint analyses were used to assess locomotor functions, and immunofluorescence staining of the injured spinal cord segments was performed to detect oxidative stress status. Results: Spinal cord neurons were preserved by hydrogen administration after mechanical injury in a dose-dependent manner. ROS generation, oxidative stress injury-related markers, and the number of apoptotic neurons were significantly reduced after hydrogen treatment. The ATP production and mPTP function in injured neurons were preserved by hydrogen incubation. The expression levels of Cox8b, Cox6a2, Cox7a1, Hspb7, and Atp2a1 were inhibited by hydrogen treatment. BMS scores and the footprint assessment of mice with SCI were improved by hydrogen inhalation. Conclusions: Hydrogen inhalation (75%) ameliorated SCI in vivo and attenuated neuronal mechanical injuries in vitro, and its protective effect on spinal cord neurons was exerted in a dose-dependent manner. The underlying mechanisms included reducing ROS generation and oxidative stress, inhibiting neuronal apoptosis, and restoring mitochondrial construction and function. Cox8b, Cox6a2, Cox7a1, Hspb7, and Atp2a1 were identified as potential target genes of hydrogen treatment.
- Subjects :
- 0301 basic medicine
Physiology
Central nervous system
Apoptosis
Spinal cord injury
Pharmacology
medicine.disease_cause
lcsh:Physiology
lcsh:Biochemistry
03 medical and health sciences
chemistry.chemical_compound
Mice
0302 clinical medicine
Administration, Inhalation
medicine
Animals
lcsh:QD415-436
Cells, Cultured
Spinal Cord Injuries
chemistry.chemical_classification
Neurons
Reactive oxygen species
lcsh:QP1-981
Chemistry
MPTP
Neuron
medicine.disease
Spinal cord
Neuroprotection
Mitochondrial
Mitochondria
Oxidative Stress
030104 developmental biology
medicine.anatomical_structure
Neuroprotective Agents
Mitochondrial permeability transition pore
Spinal Cord
Female
030217 neurology & neurosurgery
Oxidative stress
Hydrogen
Subjects
Details
- ISSN :
- 14219778
- Volume :
- 47
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
- Accession number :
- edsair.doi.dedup.....1d1b090b6bd5c27cae7556a4fa634266