Back to Search Start Over

Differences in Cartilage-Forming Capacity of Expanded Human Chondrocytes From Ear and Nose and Their Gene Expression Profiles

Authors :
Gilbert J Nolst-Trenité
Robert J. Baatenburg de Jong
Holger Jahr
Wendy Koevoet
Inez K. B. Slagt
Gerjo J.V.M. van Osch
Eugène T P Verwiel
René M.L. Poublon
Catharine A. Hellingman
Ear, Nose and Throat
Faculteit der Geneeskunde
Otorhinolaryngology and Head and Neck Surgery
Orthopedics and Sports Medicine
Source :
Cell transplantation, 20(6), 925-940. Cognizant Communication Corporation, Cell Transplantation, 20(6), 925-940. SAGE Publishing, Cell Transplantation, Vol 20 (2011)
Publication Year :
2011
Publisher :
Cognizant Communication Corporation, 2011.

Abstract

The aim of this study was to evaluate the potential of culture-expanded human auricular and nasoseptal chondrocytes as cell source for regeneration of stable cartilage and to analyze the differences in gene expression profile of expanded chondrocytes from these specific locations. Auricular chondrocytes in monolayer proliferated less and more slowly (two passages took 26.7 ± 2.1 days and were reached in 4.37 ± 0.30 population doublings) than nasoseptal chondrocytes (19.3 ± 2.5 days; 5.45 ± 0.20 population doublings). However, auricular chondrocytes produced larger pellets with more cartilage-like matrix than nasoseptal chondrocytes (2.2 ± 0.71 vs. 1.7 ± 0.13 mm in diameter after 35 days of culture). Although the matrix formed by auricular and nasoseptal chondrocytes contained collagen X, it did not mineralize in an in vitro model or after in vivo subcutaneous implantation. A DNA microarray study on expanded auricular and nasoseptal chondrocytes from the same donors revealed 1,090 differentially expressed genes. No difference was observed in the expression of known markers of chondrogenic capacity (e.g., collagen II, FGFR3, BMP2, and ALK1). The most striking differences were that the auricular chondrocytes had a higher expression of anabolic growth factors BMP5 and IGF1, while matrix-degrading enzymes MMP13 and ADAMTS5 were higher expressed in nasoseptal chondrocytes. This might offer a possible explanation for the observed higher matrix production by auricular chondrocytes. Moreover, chondrocytes isolated from auricular or nasoseptal cartilage had specific gene expression profiles even after expansion. These differently expressed genes were not restricted to known characterization of donor site subtype (e.g., elastic), but were also related to developmental processes.

Details

Language :
English
ISSN :
15553892 and 09636897
Volume :
20
Issue :
6
Database :
OpenAIRE
Journal :
Cell transplantation
Accession number :
edsair.doi.dedup.....1cff491bcaace0394b052925bc1391db