Back to Search Start Over

A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis

Authors :
Christophe Godin
Teva Vernoux
Etienne Farcot
Géraldine Brunoud
Yassin Refahi
Alain Jean-Marie
Minna Pulkkinen
Reproduction et développement des plantes (RDP)
École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Sainsbury Laboratory
University of Cambridge [UK] (CAM)
University of Nottingham, UK (UON)
Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire d'Etudes des Ressources Forêt-Bois (LERFoB)
AgroParisTech-Institut National de la Recherche Agronomique (INRA)
Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon)
Sainsbury Laboratory Cambridge University (SLCU)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Models for the performance analysis and the control of networks (MAESTRO)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
AgroParisTech
Modeling plant morphogenesis at different scales, from genes to phenotype (VIRTUAL PLANTS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
HFSP grant RGP0054-2013 BioSensors (Human Frontier Science Program) to TV and CG, Inria Project Lab Morphogenetics and ANR-funded Institute of Computational Biology (IBC) to CG, Jan Traas’s ERC Morphodynamics & INRA CJS to YR
École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Sainsbury Laboratory Cambridge
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Source :
eLife, eLife, eLife Sciences Publication, 2016, 5, ⟨10.7554/eLife.14093.001⟩, eLife, Vol 5 (2016), eLife, eLife Sciences Publication, 2016, 71, pp.50. ⟨10.7554/eLife.14093.001⟩, eLife, 2016, 71, pp.50. ⟨10.7554/eLife.14093.001⟩, eLife, eLife Sciences Publication, 2016, 71, pp.50. ⟨10.7554/eLife.14093.048⟩, eLife (5), . (2016)
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Exploration of developmental mechanisms classically relies on analysis of pattern regularities. Whether disorders induced by biological noise may carry information on building principles of developmental systems is an important debated question. Here, we addressed theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a model system. Phyllotaxis arises from reiterative organogenesis driven by lateral inhibitions at the shoot apex. Motivated by recurrent observations of disorders in phyllotaxis patterns, we revisited in depth the classical deterministic view of phyllotaxis. We developed a stochastic model of primordia initiation at the shoot apex, integrating locality and stochasticity in the patterning system. This stochastic model recapitulates phyllotactic patterns, both regular and irregular, and makes quantitative predictions on the nature of disorders arising from noise. We further show that disorders in phyllotaxis instruct us on the parameters governing phyllotaxis dynamics, thus that disorders can reveal biological watermarks of developmental systems. DOI: http://dx.doi.org/10.7554/eLife.14093.001<br />eLife digest Plants grow throughout their lifetime, forming new flowers and leaves at the tips of their stems through a patterning process called phyllotaxis, which occurs in spirals for a vast number of plant species. The classical view suggests that the positioning of each new leaf or flower bud at the tip of a growing stem is based on a small set of principles. This includes the idea that buds produce inhibitory signals that prevent other buds from forming too close to each other. When computational models of phyllotaxis follow these ‘deterministic’ principles, they are able to recreate the spiral pattern the buds form on a growing stem. In real plants, however, the spiral pattern is not always perfect. The observed disturbances in the pattern are believed to reflect the presence of random fluctuations – regarded as noise – in phyllotaxis. Here, using numerical simulations, Refahi et al. noticed that the patterns of inhibitory signals in a shoot tip pre-determine the locations of several competing sites where buds could form in a robust manner. However, random fluctuations in the way cells perceive these inhibitory signals could greatly disturb the timing of organ formation and affect phyllotaxis patterns. Building on this, Refahi et al. created a new computational model of bud patterning that takes into account some randomness in how cells perceive the inhibitory signals released by existing buds. The model can accurately recreate the classical spiral patterns of buds and also produces occasional disrupted patterns that are similar to those seen in real plants. Unexpectedly, Refahi et al. show that these ‘errors’ reveal key information about how the signals that control phyllotaxis might work. These findings open up new avenues of research into the role of noise in phyllotaxis. The model can be used to predict how altering the activities of genes or varying plant growth conditions might disturb this patterning process. Furthermore, the work highlights how the structure of disturbances in a biological system can shed new light on how the system works. DOI: http://dx.doi.org/10.7554/eLife.14093.002

Details

Language :
English
ISSN :
2050084X
Database :
OpenAIRE
Journal :
eLife, eLife, eLife Sciences Publication, 2016, 5, ⟨10.7554/eLife.14093.001⟩, eLife, Vol 5 (2016), eLife, eLife Sciences Publication, 2016, 71, pp.50. ⟨10.7554/eLife.14093.001⟩, eLife, 2016, 71, pp.50. ⟨10.7554/eLife.14093.001⟩, eLife, eLife Sciences Publication, 2016, 71, pp.50. ⟨10.7554/eLife.14093.048⟩, eLife (5), . (2016)
Accession number :
edsair.doi.dedup.....1cf70952eaf853aa3421ece7f96090ca
Full Text :
https://doi.org/10.7554/eLife.14093.001⟩