Back to Search Start Over

Increased expression of ANAC017 primes for accelerated senescence

Authors :
Adriana Pružinská
Kasim Khan
A. Harvey Millar
Chun Pong Lee
Olivier Van Aken
Brendan O'Leary
Martyna Broda
Source :
Plant Physiol
Publication Year :
2021
Publisher :
Oxford University Press (OUP), 2021.

Abstract

Recent studies in Arabidopsis (Arabidopsis thaliana) have reported conflicting roles for NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), a transcription factor regulating mitochondria-to-nuclear signaling, and its closest paralog NAC DOMAIN CONTAINING PROTEIN 16 (ANAC016), in leaf senescence. By synchronizing senescence in individually darkened leaves of knockout and overexpressing mutants from these contrasting studies, we demonstrate that elevated ANAC017 expression consistently causes accelerated senescence and cell death. A time-resolved transcriptome analysis revealed that senescence-associated pathways such as autophagy are not constitutively activated in ANAC017 overexpression lines, but require a senescence-stimulus to trigger accelerated induction. ANAC017 transcript and ANAC017-target genes are constitutively upregulated in ANAC017 overexpression lines, but surprisingly show a transient “super-induction” 1 d after senescence induction. This induction of ANAC017 and its target genes is observed during the later stages of age-related and dark-induced senescence, indicating the ANAC017 pathway is also activated in natural senescence. In contrast, knockout mutants of ANAC017 showed lowered senescence-induced induction of ANAC017 target genes during the late stages of dark-induced senescence. Finally, promoter binding analyses show that the ANAC016 promoter sequence is directly bound by ANAC017, so ANAC016 likely acts downstream of ANAC017 and is directly transcriptionally controlled by ANAC017 in a feed-forward loop during late senescence.

Details

ISSN :
15322548 and 00320889
Volume :
186
Database :
OpenAIRE
Journal :
Plant Physiology
Accession number :
edsair.doi.dedup.....1cf3f2d8e0388ef644e328739ccbfd5e
Full Text :
https://doi.org/10.1093/plphys/kiab195