Back to Search Start Over

Direct validation of dune instability theory

Authors :
Cyril Gadal
Philippe Claudin
Laura Fernandez-Cascales
Zhibao Dong
Ping Lü
Sebastien Rodriguez
Sylvain Courrech du Pont
Zhishan An
Clément Narteau
Shaanxi Normal University (SNNU)
Institut de Physique du Globe de Paris (IPGP)
Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH)
Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Lanzhou University
CNRS UMR 7057 - Laboratoire Matières et Systèmes Complexes (MSC) (MSC)
Centre National de la Recherche Scientifique (CNRS)
Source :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (17), pp.e2024105118. ⟨10.1073/pnas.2024105118⟩, Proc Natl Acad Sci U S A
Publication Year :
2021

Abstract

Modern dune fields are valuable sources of information for the large-scale analysis of terrestrial and planetary environments and atmospheres, but their study relies on understanding the small-scale dynamics that constantly generate new dunes and reshape older ones. Here we designed a landscape-scale experiment at the edge of the Gobi desert, China, to quantify the development of incipient dunes under the natural action of winds. High-resolution topographic data documenting 42~months of bedform dynamics are examined to provide a spectral analysis of dune pattern formation. We identified two successive phases in the process of dune growth, from the initial flat sand bed to a meter-high periodic pattern. We focus on the initial phase, when the linear regime of dune instability applies, and measure the growth rate of dunes of different wavelengths. We identify the existence of a maximum growth rate, which readily explains the mechanism by which dunes select their size, leading to the prevalence of a 15~m-wavelength pattern. We quantitatively compare our experimental results to the prediction of the dune instability theory using transport and flow parameters independently measured in the field. The remarkable agreement between theory and observations demonstrates that the linear regime of dune growth is permanently expressed on low-amplitude bed topography, before larger regular patterns and slip faces eventually emerge. Our experiment underpin existing theoretical models for the early development of eolian dunes, which can now be used to provide reliable insights into atmospheric and surface processes on Earth and other planetary bodies.<br />36 pages, 19 figures (supplementary material included)

Details

Language :
English
ISSN :
00278424 and 10916490
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (17), pp.e2024105118. ⟨10.1073/pnas.2024105118⟩, Proc Natl Acad Sci U S A
Accession number :
edsair.doi.dedup.....1cda437b0db2147c4386119ba97e662a