Back to Search
Start Over
Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems
- Publication Year :
- 2020
-
Abstract
- In this paper, combining the ideas of exponential integrators and discrete gradients, we propose and analyze a new structure-preserving exponential scheme for the conservative or dissipative system $\dot{y} = Q(M y + \nabla U (y))$, where $Q$ is a $d\times d$ skew-symmetric or negative semidefinite real matrix, $M$ is a $d\times d$ symmetric real matrix, and $U : \mathbb{R}^d\rightarrow\mathbb{R}$ is a differentiable function. We present two properties of the new scheme. The paper is accompanied by numerical results that demonstrate the remarkable superiority of our new scheme in comparison with other structure-preserving schemes in the scientific literature.
- Subjects :
- Lyapunov function
Pure mathematics
65L04, 65L05, 65M20, 65P10, 65Z05
Applied Mathematics
010103 numerical & computational mathematics
Numerical Analysis (math.NA)
Exponential integrator
01 natural sciences
Exponential function
010101 applied mathematics
Computational Mathematics
symbols.namesake
Matrix (mathematics)
Scheme (mathematics)
Dissipative system
symbols
FOS: Mathematics
Nabla symbol
Differentiable function
Mathematics - Numerical Analysis
0101 mathematics
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....1cbba545bc19404401a1a1e6095cd7d2