Back to Search Start Over

Enzyme Complexes of Ptr4CL and PtrHCT Modulate Co-enzyme A Ligation of Hydroxycinnamic Acids for Monolignol Biosynthesis in Populus trichocarpa

Authors :
Chenmin Yang
Jack P. Wang
Vincent L. Chiang
Jie Liu
Jina Song
Chien-Yuan Lin
Ronald R. Sederoff
Baoguang Liu
Cranos M. Williams
Hsi-Chuan Chen
Philip L. Loziuk
Rui Shi
David C. Muddiman
Ying-Chung Jimmy Lin
Sermsawat Tunlaya-Anukit
Yi Sun
Source :
Frontiers in Plant Science, Vol 12 (2021)
Publication Year :
2021
Publisher :
Frontiers Media SA, 2021.

Abstract

Co-enzyme A (CoA) ligation of hydroxycinnamic acids by 4-coumaric acid:CoA ligase (4CL) is a critical step in the biosynthesis of monolignols. Perturbation of 4CL activity significantly impacts the lignin content of diverse plant species. InPopulus trichocarpa, two well-studied xylem-specific Ptr4CLs (Ptr4CL3 and Ptr4CL5) catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. Subsequently, two 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) mediate the conversion of 4-coumaroyl-CoA to caffeoyl-CoA. Here, we show that the CoA ligation of 4-coumaric and caffeic acids is modulated by Ptr4CL/PtrHCT protein complexes. Downregulation ofPtrHCTsreduced Ptr4CL activities in the stem-differentiating xylem (SDX) of transgenicP. trichocarpa. The Ptr4CL/PtrHCT interactions were then validatedin vivousing biomolecular fluorescence complementation (BiFC) and protein pull-down assays inP. trichocarpaSDX extracts. Enzyme activity assays using recombinant proteins of Ptr4CL and PtrHCT showed elevated CoA ligation activity for Ptr4CL when supplemented with PtrHCT. Numerical analyses based on an evolutionary computation of the CoA ligation activity estimated the stoichiometry of the protein complex to consist of one Ptr4CL and two PtrHCTs, which was experimentally confirmed by chemical cross-linking using SDX plant protein extracts and recombinant proteins. Based on these results, we propose that Ptr4CL/PtrHCT complexes modulate the metabolic flux of CoA ligation for monolignol biosynthesis during wood formation inP. trichocarpa.

Details

ISSN :
1664462X
Volume :
12
Database :
OpenAIRE
Journal :
Frontiers in Plant Science
Accession number :
edsair.doi.dedup.....1c79918a23da133e97471f0841019cd2