Back to Search Start Over

Signed tropical halfspaces and convexity

Authors :
Loho, Georg
Skomra, Mateusz
Faculty of Electrical Engineering, Mathematics and Computer Science [Twente] (EEMCS)
University of Twente
Equipe Polynomial OPtimization (LAAS-POP)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Publication Year :
2022

Abstract

We extend the fundamentals for tropical convexity beyond the tropically positive orthant expanding the theory developed by Loho and V\'egh (ITCS 2020). We study two notions of convexity for signed tropical numbers called 'TO-convexity' (formerly 'signed tropical convexity') and the novel notion 'TC-convexity'. We derive several separation results for TO-convexity and TC-convexity. A key ingredient is a thorough understanding of TC-hemispaces - those TC-convex sets whose complement is also TC-convex. Furthermore, we use new insights in the interplay between convexity over Puiseux series and its signed valuation. Remarkably, TC-convexity can be seen as a natural convexity notion for representing oriented matroids as it is arises from a generalization of the composition operation of vectors in an oriented matroid.<br />Comment: 48 pages, 8 figures

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....1c6bfe15882b27fb55fc4a40765dd077