Back to Search Start Over

A new formulation to estimate the variance of model prediction: application to near infrared spectroscopy calibration

Authors :
Elvira Fernández-Ahumada
B. Palagos
Jean-Michel Roger
Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Source :
Analytica Chimica Acta, Analytica Chimica Acta, Elsevier Masson, 2012, 721, p. 28-p. 34. ⟨10.1016/j.aca.2012.01.044⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

Evaluation of uncertainty affecting predictions is a major trend in analytical chemistry and chemometrics. Several approximate expressions and resampling methods have been proposed for the estimation of prediction uncertainty when using multivariate calibration. This article proposes a new expression for the variance of prediction, adapted to near infrared spectroscopy specificities and particularly to the spectral error structure, induced by the high colinearity of the variables. The proposed analytical expression enables a detailed evaluation of the different contributions and components of uncertainty affecting the model. An application to real data of feedstuff near infrared spectra related to protein content has shown its advantages.

Details

Language :
English
ISSN :
00032670
Database :
OpenAIRE
Journal :
Analytica Chimica Acta, Analytica Chimica Acta, Elsevier Masson, 2012, 721, p. 28-p. 34. ⟨10.1016/j.aca.2012.01.044⟩
Accession number :
edsair.doi.dedup.....1c6526bf0dd8ce3a533248498cc3e774