Back to Search Start Over

The Moment-SOS hierarchy

Authors :
Lasserre, Jean
Équipe Méthodes et Algorithmes en Commande (LAAS-MAC)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
European Project: 666981,H2020,ERC-2014-ADG,TAMING(2015)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Source :
International Congress of Mathematicians 2018 (ICM 2018), International Congress of Mathematicians 2018 (ICM 2018), Aug 2018, Rio de Janeiro, Brazil. 21p
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

The Moment-SOS hierarchy initially introduced in optimization in 2000, is based on the theory of the K-moment problem and its dual counterpart, polynomials that are positive on K. It turns out that this methodology can be also applied to solve problems with positivity constraints " f (x) $\ge$ 0 for all x $\in$ K " and/or linear constraints on Borel measures. Such problems can be viewed as specific instances of the " Generalized Problem of Moments " (GPM) whose list of important applications in various domains is endless. We describe this methodology and outline some of its applications in various domains.<br />Comment: To appear in Proceedings of ICM-2018, Rio de Janeiro

Details

Database :
OpenAIRE
Journal :
International Congress of Mathematicians 2018 (ICM 2018), International Congress of Mathematicians 2018 (ICM 2018), Aug 2018, Rio de Janeiro, Brazil. 21p
Accession number :
edsair.doi.dedup.....1bfdad560fb42b84c941d7d33d771b8a
Full Text :
https://doi.org/10.48550/arxiv.1808.03446