Back to Search
Start Over
Sound-evoked oscillation and paradoxical latency shift in the inferior colliculus neurons of the big fruit-eating bat, Artibeus jamaicensis
- Source :
- Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 197(12)
- Publication Year :
- 2011
-
Abstract
- Frequency tuning, temporal response pattern and latency properties of inferior colliculus neurons were investigated in the big fruit-eating bat, Artibeus jamaicensis. Neurons having best frequencies between 48–72 kHz and between 24–32 kHz are overrepresented. The inferior colliculus neurons had either phasic (consisting in only one response cycle at all stimulus intensities) or long-lasting oscillatory responses (consisting of multiple response cycles). Seventeen percent of neurons displayed paradoxical latency shift, i.e. their response latency increased with increasing sound level. Three types of paradoxical latency shift were found: (1) stable, that does not depend on sound duration, (2) duration-dependent, that grows with increasing sound duration, and (3) progressive, whose magnitude increases with increasing sound level. The temporal properties of paradoxical latency shift neurons compare well with those of neurons having long-lasting oscillatory responses, i.e. median inter-spike intervals and paradoxical latency shift below 6 ms are overrepresented. In addition, oscillatory and paradoxical latency shift neurons behave similarly when tested with tones of different durations. Temporal properties of oscillation and PLS found in the IC of fruit-eating bats are similar to those found in the IC of insectivorous bats using downward frequency-modulated echolocation calls.
- Subjects :
- Inferior colliculus
Male
Sound Spectrography
Time Factors
Physiology
Human echolocation
Stimulus (physiology)
Behavioral Neuroscience
Chiroptera
Reaction Time
Animals
Ecology, Evolution, Behavior and Systematics
Artibeus
Neurons
biology
Signal Processing, Computer-Assisted
Anatomy
biology.organism_classification
Inferior Colliculi
Acoustic Stimulation
Echolocation
Multiple response
Time Perception
Auditory Perception
Animal Science and Zoology
Female
Neuroscience
Subjects
Details
- ISSN :
- 14321351
- Volume :
- 197
- Issue :
- 12
- Database :
- OpenAIRE
- Journal :
- Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
- Accession number :
- edsair.doi.dedup.....1bf2560785a304d0eb1b035396980bb9