Back to Search Start Over

Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions

Authors :
Muhammad Danang Birowosuto
Suriani Abu Bakar
Muhammad Noor Azlan
Muqoyyanah Muqoyyanah
Mohd Ambri Mohamed
Norhafizah Jusoh
Mohd Hafiz Dzarfan Othman
Norhayati Hashim
Azmi Mohamed
Mohd Khairul Ahmad
Mohamad Hafiz Mamat
Tetsuo Soga
Source :
Environmental Science and Pollution Research. 28:65171-65187
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

In this work, waste cooking palm oil (WCPO)-based carbon nanotubes (CNTs) with encapsulated iron (Fe) nanoparticles have been successfully produced via modified thermal chemical vapor deposition method. Based on several characterizations, the dense WCPO-based CNT was produced with high purity of 89% and high crystallinity proven by low ID/IG ratio (0.43). Moreover, the ferromagnetic response of CNTs showed that the average coercivity and magnetization saturation were found to be 551.5 Oe and 13.4 emu/g, respectively. These produced WCPO-based CNTs were further used as heavy metal ions adsorbent for wastewater treatment application. Some optimizations, such as the effect of different adsorbent dosage, varied initial pH solution, and various heavy metal ions, were investigated. The adsorption studies showed that the optimum adsorbent dosage was 1.8 g/L when it was applied to 100 mg/L Cu (II) solution at neutral pH (pH 7). Further measurement then showed that high Cu (II) ion removal percentage (~80%) was achieved when it was applied at very acidic solution (pH 2). Last measurement confirmed that the produced WCPO-based CNTs successfully removed different heavy metal ions in the following order: Fe (II) > Zn (II) ≈ Cu (II) with the removal percentage in the range of 99.2 to 99.9%. The adsorption isotherm for Cu (II) was better fitted by Langmuir model with a correlation coefficient of 0.82751. WCPO-based CNTs can be a potential material to be applied as adsorbent in heavy metal ion removal.

Details

ISSN :
16147499 and 09441344
Volume :
28
Database :
OpenAIRE
Journal :
Environmental Science and Pollution Research
Accession number :
edsair.doi.dedup.....1be3a22b5660f2013ac85ee7cb21e25e
Full Text :
https://doi.org/10.1007/s11356-021-14918-y