Back to Search Start Over

Non-Arbitrage up to Random Horizon for Semimartingale Models

Authors :
Aksamit, Anna
Choulli, Tahir
Deng, Jun
Jeanblanc, Monique
Laboratoire de Mathématiques et Modélisation d'Evry
Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
University of Oxford [Oxford]
University of Alberta
College of Engineering [Beijing]
China Agricultural University (CAU)
Université d'Évry-Val-d'Essonne (UEVE)
Laboratoire de Mathématiques et Modélisation d'Evry (LaMME)
Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Centre National de la Recherche Scientifique (CNRS)
JEANBLANC, Monique
Institut National de la Recherche Agronomique (INRA) - Université d'Evry-Val d'Essonne - ENSIIE - Centre National de la Recherche Scientifique (CNRS)
University of Alberta [Edmonton]
Université d'Evry-Val d'Essonne
University of Oxford
Publication Year :
2013
Publisher :
arXiv, 2013.

Abstract

This paper addresses the question of how an arbitrage-free semimartingale model is affected when stopped at a random horizon. We focus on No-Unbounded-Profit-with-Bounded-Risk (called NUPBR hereafter) concept, which is also known in the literature as the first kind of non-arbitrage. For this non-arbitrage notion, we obtain two principal results. The first result lies in describing the pairs of market model and random time for which the resulting stopped model fulfills NUPBR condition. The second main result characterises the random time models that preserve the NUPBR property after stopping for any market model. These results are elaborated in a very general market model, and we also pay attention to some particular and practical models. The analysis that drives these results is based on new stochastic developments in semimartingale theory with progressive enlargement. Furthermore, we construct explicit martingale densities (deflators) for some classes of local martingales when stopped at random time.<br />Comment: 40 pages. This version develops in details the ideas and the results of the previous version and fixes a glitch in the quasi-left-continuous case

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....1bdf7d65ec28e7d35d92cbfe0af1c101
Full Text :
https://doi.org/10.48550/arxiv.1310.1142