Back to Search Start Over

Evaluation of pinhole collimator materials for micron-resolution ex vivo SPECT

Authors :
Marlies C Goorden
Chris Kamphuis
Freek J. Beekman
Minh Phuong Nguyen
Source :
Physics in Medicine and Biology, 64(10)
Publication Year :
2019

Abstract

Pinhole collimation is widely recognized for offering superior resolution-sensitivity trade-off in SPECT imaging of small subjects. The newly developed EXIRAD-3D autoradiography technique (MILabs B.V.) based on a highly focusing multi-pinhole collimator achieves micron-resolution SPECT for cryo-cooled tissue samples. For such high resolutions, the choice of pinhole material may have a significant impact on images. Therefore, this paper aims to compare the performance of EXIRAD-3D with lead, tungsten, gold, and depleted uranium pinhole collimators designed such that they achieve equal sensitivities. Performance in terms of resolution is characterized for several radioisotopes, namely 111In (171 keV and 245 keV), 99mTc (140 keV), 201Tl (71 keV), and 125I (27 keV). Using Monte Carlo simulation, point spread functions were generated and their profiles as well as their full-width-at-half-maximum and full-width-at-tenth-maximum were determined and evaluated for different materials and isotopes. Additionally, simulated reconstructions of a Derenzo resolution phantom, validated with experimental data, were judged by assessment of the resolvable rods as well as a contrast-to-noise ratio (CNR) analysis. Our results indicate that using materials with higher photon-stopping power yields images with better CNR for the studied isotopes with improvements ranging from 1.9% to 36.6%. Visual assessment on the reconstructed images suggests that for EXIRAD-3D, the tungsten collimator is generally a good choice for a wide range of SPECT isotopes. For relatively high-energy isotopes such as 111In, using gold inserts can be beneficial.

Details

Language :
English
ISSN :
00319155
Database :
OpenAIRE
Journal :
Physics in Medicine and Biology, 64(10)
Accession number :
edsair.doi.dedup.....1bd2ffaf7141400227409687fc55e58d