Back to Search
Start Over
Clamping, bending, and twisting inter-domain motions in the misfold-recognising portion of UDP-glucose: glycoprotein glucosyl-transferase
- Source :
- Structure(London, England:1993), Structure (Lond.) 29 (2021): 357–370.e9. doi:10.1016/j.str.2020.11.017, info:cnr-pdr/source/autori:Modenutti C.P.; Blanco Capurro J.I.; Ibba R.; Alonzi D.S.; Song M.N.; Vasiljevic S.; Kumar A.; Chandran A.V.; Tax G.; Marti L.; Hill J.C.; Lia A.; Hensen M.; Waksman T.; Rushton J.; Rubichi S.; Santino A.; Marti M.A.; Zitzmann N.; Roversi P./titolo:Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose: Glycoprotein glucosyltransferase/doi:10.1016%2Fj.str.2020.11.017/rivista:Structure (Lond.)/anno:2021/pagina_da:357/pagina_a:370.e9/intervallo_pagine:357–370.e9/volume:29
- Publication Year :
- 2021
- Publisher :
- Cell Press, 2021.
-
Abstract
- Summary UDP-glucose:glycoprotein glucosyltransferase (UGGT) flags misfolded glycoproteins for ER retention. We report crystal structures of full-length Chaetomium thermophilum UGGT (CtUGGT), two CtUGGT double-cysteine mutants, and its TRXL2 domain truncation (CtUGGT-ΔTRXL2). CtUGGT molecular dynamics (MD) simulations capture extended conformations and reveal clamping, bending, and twisting inter-domain movements. We name “Parodi limit” the maximum distance on the same glycoprotein between a site of misfolding and an N-linked glycan that can be reglucosylated by monomeric UGGT in vitro, in response to recognition of misfold at that site. Based on the MD simulations, we estimate the Parodi limit as around 70–80 Å. Frequency distributions of distances between glycoprotein residues and their closest N-linked glycosylation sites in glycoprotein crystal structures suggests relevance of the Parodi limit to UGGT activity in vivo. Our data support a “one-size-fits-all adjustable spanner” UGGT substrate recognition model, with an essential role for the UGGT TRXL2 domain.<br />Graphical abstract<br />Highlights • UGGT MD simulations widen the conformational range observed in crystal structures • The UGGT TRXL2 domain is essential for enzymatic activity • A misfold site is closer than the Parodi limit to a glycan in UGGT clients in vitro • N-Glycan distributions suggest evolution optimizes glycoprotein surface coverage<br />Modenutti et al. carry out molecular dynamics simulations of UGGT, the enzyme surveying correct folding of glycoproteins, and propose a “one-size-fits all adjustable spanner” UGGT:substrate recognition model. The UGGT TRXL2 domain is essential for its function. The size of UGGT likely dictates restraints on the evolution of N-linked glycosylation sites.
- Subjects :
- Protein Folding
Glycan
Glycosylation
UGGT
Chaetomium
Molecular Dynamics Simulation
Article
Fungal Proteins
03 medical and health sciences
chemistry.chemical_compound
Chaetomium thermophilum
Structural Biology
Catalytic Domain
re-glucosylation
Humans
Molecular Biology
Glycoproteins
030304 developmental biology
chemistry.chemical_classification
0303 health sciences
biology
030302 biochemistry & molecular biology
ER retention
misfolding
molecular dynamics
X-ray diffraction
glycoprotein folding
A-site
misfold sensing
HEK293 Cells
chemistry
Glucosyltransferases
Parodi limit
Biophysics
biology.protein
negative-stain EM
Glucosyltransferase
GT24 domain
Glycoprotein
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Structure(London, England:1993), Structure (Lond.) 29 (2021): 357–370.e9. doi:10.1016/j.str.2020.11.017, info:cnr-pdr/source/autori:Modenutti C.P.; Blanco Capurro J.I.; Ibba R.; Alonzi D.S.; Song M.N.; Vasiljevic S.; Kumar A.; Chandran A.V.; Tax G.; Marti L.; Hill J.C.; Lia A.; Hensen M.; Waksman T.; Rushton J.; Rubichi S.; Santino A.; Marti M.A.; Zitzmann N.; Roversi P./titolo:Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose: Glycoprotein glucosyltransferase/doi:10.1016%2Fj.str.2020.11.017/rivista:Structure (Lond.)/anno:2021/pagina_da:357/pagina_a:370.e9/intervallo_pagine:357–370.e9/volume:29
- Accession number :
- edsair.doi.dedup.....1ba809d96b8e8640d443e2d32e298256
- Full Text :
- https://doi.org/10.1016/j.str.2020.11.017