Back to Search Start Over

Charge transfer and polarisability in ionic liquids: a case study

Authors :
Frederik Philippi
Kateryna Goloviznina
Zheng Gong
Sascha Gehrke
Barbara Kirchner
Agílio A. H. Pádua
Patricia A. Hunt
Laboratoire de Chimie - UMR5182 (LC)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
ANR-16-IDEX-0005,IDEXLYON,IDEXLYON(2016)
Source :
Physical Chemistry Chemical Physics, Physical Chemistry Chemical Physics, 2022, 24 (5), pp.3144-3162. ⟨10.1039/d1cp04592j⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

The practical use of ionic liquids (ILs) is benefiting from a growing understanding of the underpinning structural and dynamic properties, facilitated through classical molecular dynamics (MD) simulations. The predictive and explanatory power of a classical MD simulation is inextricably linked to the underlying force field. A key aspect of the forcefield for ILs is the ability to recover charge based interactions. Our focus in this paper is on the description and recovery of charge transfer and polarisability effects, demonstrated through MD simulations of the widely used 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4C1im][NTf2] IL. We study the charge distributions generated by a range of ab initio methods, and present an interpolation method for determining atom-wise scaled partial charges. Two novel methods for determining the mean field (total) charge transfer from anion to cation are presented. The impact of using different charge models and different partial charge scaling (unscaled, uniformly scaled, atom-wise scaled) are compared to fully polarisable simulations. We study a range of Drude particle explicitly polarisable potentials and shed light on the performance of current approaches to counter known problems. It is demonstrated that small changes in the charge description and MD methodology can have a significant impact; biasing some properties, while leaving others unaffected within the structural and dynamic domains.

Details

Language :
English
ISSN :
14639076 and 14639084
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics, Physical Chemistry Chemical Physics, 2022, 24 (5), pp.3144-3162. ⟨10.1039/d1cp04592j⟩
Accession number :
edsair.doi.dedup.....1b31ebd2d0d9eb9d2b2229c9b70da9c7
Full Text :
https://doi.org/10.1039/d1cp04592j⟩