Back to Search Start Over

Two‐sided turbulent surface layer parameterizations for computing air‐sea fluxes

Authors :
Jean-Luc Redelsperger
Marie-Noëlle Bouin
Florian Lemarié
Charles Pelletier
Eric Blayo
Earth and Life Institute [Louvain-La-Neuve] (ELI)
Université Catholique de Louvain = Catholic University of Louvain (UCL)
Mathematics and computing applied to oceanic and atmospheric flows (AIRSEA)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Grenoble Alpes (UGA)-Laboratoire Jean Kuntzmann (LJK)
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Océanographie Physique et Spatiale (LOPS)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE01-0007,COCOA,Méthodes mathématiquement et physiquement consistantes pour le couplage océan-atmosphère(2016)
Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Source :
Quarterly Journal Of The Royal Meteorological Society (0035-9009) (Wiley / Blackwell), 2021-04, Vol. 147, N. 736, P. 1726-1751, Quarterly Journal of the Royal Meteorological Society, Quarterly Journal of the Royal Meteorological Society, 2021, 147 (736), pp.1726-1751. ⟨10.1002/qj.3991⟩, Quarterly Journal of the Royal Meteorological Society, Wiley, 2021, 147 (736), pp.1726-1751. ⟨10.1002/qj.3991⟩
Publication Year :
2021
Publisher :
Wiley / Blackwell, 2021.

Abstract

International audience; Standard methods for determining air ‐ sea fluxes typically rely on bulk algorithms set in the frame of Monin‐Obukhov stability theory (MOST), using ocean surface fields and atmosphere near‐surface fields. In the context of coupled ocean ‐ atmosphere simulations, the shallowest ocean vertical level is usually used as bulk input and by default, the turbulent closure is one‐sided: it extrapolates atmosphere near‐surface solution profiles (for wind speed, temperature and humidity) to the prescribed ocean surface values. Using near‐surface ocean fields as surface ones is equivalent to considering that in the ocean surface layer, solution profiles are constant instead of also being determined by a turbulent closure. Here we introduce a method for extending existing turbulent parameterizations to a two‐sided framework by explicitely including the ocean surface layer within the aforementioned parameterizations. The formalism we use for this method is derived from that of classical turbulent closures, so that our novelties can easily be implemented within existing formulations. Special care is taken to ensure the smoothness of resulting solution profiles. Other physical phenomena, such as the penetration of radiative fluxes in the ocean and the formation of waves, are then included within our formalism, and their effects are assessed. We also investigate the impact of such two‐sided bulk formulations on air ‐ sea fluxes evaluated from a setting similar to those of coupled ocean ‐ atmosphere simulations.

Details

Language :
English
ISSN :
00359009 and 1477870X
Database :
OpenAIRE
Journal :
Quarterly Journal Of The Royal Meteorological Society (0035-9009) (Wiley / Blackwell), 2021-04, Vol. 147, N. 736, P. 1726-1751, Quarterly Journal of the Royal Meteorological Society, Quarterly Journal of the Royal Meteorological Society, 2021, 147 (736), pp.1726-1751. ⟨10.1002/qj.3991⟩, Quarterly Journal of the Royal Meteorological Society, Wiley, 2021, 147 (736), pp.1726-1751. ⟨10.1002/qj.3991⟩
Accession number :
edsair.doi.dedup.....1b2c369c96bb32d92513db5c62815528