Back to Search Start Over

Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

Authors :
Yuri N. Gartstein
Joshua A. Robinson
Kehao Zhang
Siddharth Sampat
Sara M. Rupich
Anton V. Malko
Tianle Guo
Yves J. Chabal
Source :
Scientific Reports. 7
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

Details

ISSN :
20452322
Volume :
7
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....1b0a065f368f416b9aa4b2e906a5b820
Full Text :
https://doi.org/10.1038/srep41967