Back to Search Start Over

A hybrid parareal Monte Carlo algorithm for parabolic problems

Authors :
Dabaghi, Jad
Maday, Yvon
Zoia, Andrea
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Université Paris-Saclay
Ecole Supérieure d'Ingénieurs Léonard de Vinci (ESILV)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
This project has received funding from the ANR project 'Ciné-Para' (ANR-15-CE23-0019). This work has received funding from the European Research Council (ERC) under theEuropean Union’s Horizon 2020 research and innovation program (grant agreement No 810367- project EMC2) (YM) and from the European High Performance Computing Joint Undertaking (EuroHPC JU) under the European Union’s Horizon 2020 research and innovationprogram (grant agreement No 955701 - project TIME-X) (YM
ANR-15-CE23-0019,CINE-PARA,Méthodes de parallélisation pour cinétiques complexes(2015)
European Project: 810367,EMC2(2019)
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS)
École des Ponts ParisTech (ENPC)
MATHematics for MatERIALS (MATHERIALS)
École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
Journal of Computational and Applied Mathematics, Journal of Computational and Applied Mathematics, Elsevier, 2023, 420, ⟨10.1016/j.cam.2022.114800⟩, Journal of Computational and Applied Mathematics, 2023, 420, ⟨10.1016/j.cam.2022.114800⟩
Publication Year :
2023
Publisher :
Elsevier BV, 2023.

Abstract

International audience; In this work, we propose a hybrid Monte Carlo/deterministic ``parareal-in-time'' approachdevoted to acceleratingMonte Carlo simulations over massively parallel computing environments for the simulation of time-dependent problems.This parareal approach iterates on two different solvers: a low-cost “coarse” solver based on a very cheap deterministic Galerkin scheme and a “fine” solver based on a high-fidelity Monte Carlo resolution.In a set of benchmark numerical experiments based on atoy model concerning the time-dependent diffusion equation, we compare our hybrid parareal strategy with a standard full Monte Carlo solution.In particular, we show that for a large number of processors, our hybrid strategy significantly reduces the computational time of the simulation while preserving its accuracy. The convergence properties of the proposed Monte Carlo/deterministic parareal strategy are also discussed.

Details

ISSN :
03770427
Volume :
420
Database :
OpenAIRE
Journal :
Journal of Computational and Applied Mathematics
Accession number :
edsair.doi.dedup.....1b0713cdfec27ab86eaaeebd31586871