Back to Search
Start Over
Hydration of Reactive MgO as Partial Cement Replacement and Its Influence on the Macroperformance of Cementitious Mortars
- Source :
- Advances in Materials Science and Engineering, Vol 2019 (2019)
- Publication Year :
- 2019
- Publisher :
- Hindawi Limited, 2019.
-
Abstract
- A recent quest for more sustainable cement-based construction materials has triggered the pursuit of technically viable alternatives of cement, making reactive magnesium oxide (MgO) one of the least known top contenders to reduce this sector’s environmental impact since it participates in the cement’s hydration reactions and presents enhanced carbon capture ability during its life cycle. In this study, two different commercially available reactive MgO samples were evaluated as partial cement replacements (at 10%, 15%, and 20%, by weight) in the production of mortars. Thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX) analysis, differential thermal analysis (DTA), and powder X-ray diffraction (XRD) analysis of cement, MgO samples, and resulting mortars were carried out. All specimens were evaluated in terms of their mechanical and durability-related performance (i.e., flexural and compressive strength, carbonation, water absorption by capillary action, and shrinkage). The main results suggest that, in spite of the decreased, albeit acceptable, performance with increasing incorporation of MgO as partial cement replacement, a significant decrease was observed in the shrinkage strain of cementitious materials.
- Subjects :
- Cement
Thermogravimetric analysis
Materials science
Article Subject
Carbonation
0211 other engineering and technologies
General Engineering
02 engineering and technology
021001 nanoscience & nanotechnology
Compressive strength
Flexural strength
Differential thermal analysis
021105 building & construction
lcsh:TA401-492
lcsh:Materials of engineering and construction. Mechanics of materials
General Materials Science
Cementitious
Composite material
0210 nano-technology
Shrinkage
Subjects
Details
- ISSN :
- 16878442 and 16878434
- Volume :
- 2019
- Database :
- OpenAIRE
- Journal :
- Advances in Materials Science and Engineering
- Accession number :
- edsair.doi.dedup.....1ad5bf6113ab61356cc77e6499f28266
- Full Text :
- https://doi.org/10.1155/2019/9271507