Back to Search Start Over

Structure and Properties of Hexa- and Undecablock Terpolymers with Hierarchical Molecular Architectures

Authors :
Frank S. Bates
Guillaume Fleury
Laboratoire de Chimie des Polymères Organiques (LCPO)
Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
Dept Chem Engn & Mat Sci (Univ Minnesota)
University of Minnesota [Twin Cities] (UMN)
University of Minnesota System-University of Minnesota System
Source :
Macromolecules, Macromolecules, American Chemical Society, 2009, 42 (10), pp.3598-3610. ⟨10.1021/ma900183p⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

International audience; We report the synthesis, phase behavior, and viscoelastic and mechanical properties of a new type of multiblock copolymer composed of glassy poly(cyclohexylethylene) (C), semicrystalline poly(ethylene) (E), and elastomeric poly(ethylene-alt-propylene) (P). Five nearly monodisperse CECEC-P hexablock terpolymers and one (CECEC)(2)-P undecablock copolymer were synthesized by sequential anionic polymerization followed by catalytic hydrogenation. These multiblock copolymers, which contain equal volume fractions of P and compositionally symmetric CECEC, microphase separate by two different processes: segregation induced by crystallization of the E blocks and through chemical incompatibility between C, E, and P. These materials contain two different complex morphologies each with two length scales determined by the local (C-E) and overall (C-E-P) order-disorder transition temperatures relative to the glass and crystallization temperatures of the C and E blocks, respectively. Structure was determined by SAXS, TEM, and mechanical spectroscopy. Tensile tests reveal that the hexablock copolymers are tough (ca. >= 750% strain at break) and exhibit high elastic recovery despite the presence of P domains comprised of loose elastomeric end blocks. The (CECEC)(2)-P undecablock, which orders from the homogeneous melt as a consequence of crystallization of the E blocks, exhibits roughly three times the stress at failure without the loss of other physical properties. These results offer new insights into the development of enhanced mechanical response based on hierarchical molecular design.

Details

Language :
English
ISSN :
00249297 and 15205835
Database :
OpenAIRE
Journal :
Macromolecules, Macromolecules, American Chemical Society, 2009, 42 (10), pp.3598-3610. ⟨10.1021/ma900183p⟩
Accession number :
edsair.doi.dedup.....1acf96d07daa85ff26dc70ab4697fb6c
Full Text :
https://doi.org/10.1021/ma900183p⟩