Back to Search
Start Over
Bacterial community of industrial raw sausage packaged in modified atmosphere throughout the shelf life
- Source :
- International Journal of Food Microbiology. 280:78-86
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Ten lots of industrial raw sausages in modified atmosphere (CO2 30%, O2 70%), produced in the same plant over 7 months, were analyzed at the day after production (S samples) and at the end of shelf life (E samples), after 12 days storage at 7 °C to simulate thermal abuse. Quality of the products was generally compromised by storage at 7 °C, with only 3 E samples without alterations. During the shelf life, the pH decreased for the accumulation of acetic and lactic acids. A few biogenic amines accumulated, remaining below acceptable limits. The profile of volatile compounds got enriched with alcohols, ketones, and acids (e.g. ethanol, 2,3-butanediol, 2,3-butandione, butanoic acid) originated by bacterial metabolism. Throughout the shelf life, aerobic bacteria increased from 4.7 log to 6.6 log cfu/g, and lactic acid bacteria (LAB) from 3.7 to 8.1 log cfu/g. Staphylococci, enterobacteria, and pseudomonads passed from 3.7, 3.0, and 1.7 to 5.5, 4.8, and 3.0 log cfu/g, respectively. Dominant cultivable LAB, genotyped by RAPD-PCR, belonged to the species Lactobacillus curvatus/graminis and Lactobacillus sakei, with lower amounts of Leuconostoc carnosum and Leuconostoc mesenteroides. Brochothrix thermosphacta was the prevailing species among aerobic bacteria. The same biotypes ascribed to several different species where often found in E samples of diverse batches, suggesting a recurrent contamination from the plant of production. Profiling of 16S rRNA gene evidenced that microbiota of S samples clustered in two main groups where either Firmicutes or Bacteroidetes prevailed, albeit with taxa generally associated to the gastro-intestinal tract of mammals. The microbial diversity was lower in E samples than in S ones. Even though a common profile could not be identified, most E samples clustered together and were dominated by Firmicutes, with Lactobacillaceae and Listeriaceae as the most abundant families (mostly ascribed to Lactobacillus and Brochothrix, respectively). In a sole E sample Proteobacteria (especially Serratia) was the major phylum.
- Subjects :
- 0301 basic medicine
Brochothrix
Firmicutes
Aerobic bacteria
030106 microbiology
Colony Count, Microbial
Shelf life
Microbiology
03 medical and health sciences
Volatile Organic Compound
Food Preservation
RNA, Ribosomal, 16S
Lactobacillus
Animals
Lactic Acid
Food science
Meat Product
Acetic Acid
Volatile Organic Compounds
Spoilage
Bacteria
biology
Animal
Chemistry
Microbiota
Food Packaging
Sausage
General Medicine
Lactobacillaceae
biology.organism_classification
Random Amplified Polymorphic DNA Technique
Meat Products
Food Storage
Leuconostoc mesenteroides
Modified atmosphere
16S rRNA gene profiling
MAP
Food Microbiology
Raw meat
Leuconostoc carnosum
Food Science
Subjects
Details
- ISSN :
- 01681605
- Volume :
- 280
- Database :
- OpenAIRE
- Journal :
- International Journal of Food Microbiology
- Accession number :
- edsair.doi.dedup.....1ac36059c8e0c5d17566fe7e75b52806