Back to Search Start Over

EGF-induced nuclear translocation of SHCBP1 promotes bladder cancer progression through inhibiting RACGAP1-mediated RAC1 inactivation

Authors :
Hubin Yin
Chen Zhang
Zongjie Wei
Weiyang He
Ning Xu
Yingjie Xu
Tinghao Li
Ke Ren
Youlin Kuang
Xin Zhu
Fangchao Yuan
Haitao Yu
Xin Gou
Source :
Cell Death and Disease, Vol 13, Iss 1, Pp 1-11 (2022), Cell Death & Disease
Publication Year :
2022
Publisher :
Nature Publishing Group, 2022.

Abstract

Bladder cancer is a highly heterogeneous and aggressive malignancy with a poor prognosis. EGF/EGFR activation causes the detachment of SHC-binding protein 1 (SHCBP1) from SHC adapter protein 1 (SHC1), which subsequently translocates into the nucleus and promotes cancer development via multiple signaling pathways. However, the role of the EGF-SHCBP1 axis in bladder cancer progression remains unexplored. Herein, we report that SHCBP1 is upregulated in bladder cancer tissues and cells, with cytoplasmic or nuclear localization. Released SHCBP1 responds to EGF stimulation by translocating into the nucleus following Ser273 phosphorylation. Depletion of SHCBP1 reduces EGF-induced cell migration and invasiveness of bladder cancer cells. Mechanistically, SHCBP1 binds to RACGAP1 via its N-terminal domain of amino acids 1 ~ 428, and this interaction is enhanced following EGF treatment. Furthermore, SHCBP1 facilitates cell migration by inhibiting RACGAP-mediated GTP-RAC1 inactivation, whose activity is indispensable for cell movement. Collectively, we demonstrate that the EGF-SHCBP1-RACGAP1-RAC1 axis acts as a novel regulatory mechanism of bladder cancer progression, which offers a new clinical therapeutic strategy to combat bladder cancer.

Details

Language :
English
ISSN :
20414889
Volume :
13
Issue :
1
Database :
OpenAIRE
Journal :
Cell Death and Disease
Accession number :
edsair.doi.dedup.....1a6a069ce79739deb3cdc78168e7c777