Back to Search Start Over

Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease

Authors :
Anthony J. Rutherford
Alan H. Handyside
J Gedis Grudzinskas
Mark D. Robinson
Marie-Anne Shaw
Mark B. Omar
Robert J. Simpson
Source :
MHR: Basic science of reproductive medicine. 10:767-772
Publication Year :
2004
Publisher :
Oxford University Press (OUP), 2004.

Abstract

Preimplantation genetic diagnosis (PGD) of single gene defects following assisted conception typically involves removal of single cells from preimplantation embryos and analysis using highly sensitive PCR amplification methods taking stringent precautions to prevent contamination from foreign or previously amplified DNA. Recently, whole genome amplification has been achieved from small quantities of genomic DNA by isothermal amplification with bacteriophage 29 DNA polymerase- and exonuclease-resistant random hexamer primers. Here we report that isothermal whole genome amplification from single and small numbers of lymphocytes and blastomeres isolated from cleavage stage embryos yielded microgram quantities of amplified DNA, and allowed analysis of 20 different loci, including the DeltaF508 deletion causing cystic fibrosis and polymorphic repeat sequences used in DNA fingerprinting. As with analysis by PCR-based methods, some preferential amplification or allele drop-out at heterozygous loci was detected with single cells. With 2-5 cells, amplification was more consistent and with 10 or 20 cells results were indistinguishable from genomic DNA. The use of isothermal whole genome amplification as a universal first step marks a new era for PGD since, unlike previous PCR-based methods, sufficient DNA is amplified for diagnosis of any known single gene defect by standard methods and conditions.

Details

ISSN :
14602407 and 13609947
Volume :
10
Database :
OpenAIRE
Journal :
MHR: Basic science of reproductive medicine
Accession number :
edsair.doi.dedup.....1a6147b2c31af5682d46423e82e6a525
Full Text :
https://doi.org/10.1093/molehr/gah101