Back to Search Start Over

Integration of uniform porous shell layers in very long pillar array columns using electrochemical anodization for liquid chromatography

Authors :
Hugo Thienpont
Gert Desmet
Katsuyuki Maeno
Wim De Malsche
Manly Callewaert
Han Gardeniers
Heidi Ottevaere
Sertan Sukas
Jeff Op De Beeck
Brussels Photonics Team
Chemical Engineering and Industrial Chemistry
Chemical Engineering and Separation Science
Mesoscale Chemical Systems
MESA+ Institute
Source :
Vrije Universiteit Brussel, Analyst, 139(3), 618-625. Royal Society of Chemistry

Abstract

Electrochemical anodization has been applied to grow porous shell layers of 300 nm (30 nm pores) in 5 μm diameter pillar array columns (PACs) with a spacing of 2.5 μm. Using turn structures preceded and followed by the flow distributor structures recently introduced by our group and filled with radially elongated pillars, columns with quasi unlimited channel lengths could be conceived. The uniformity of the porous PAC was assessed by determining local plate heights along the channel, which appeared to be constant. Minimal (absolute) plate heights (H) between 4 and 6 μm were obtained at optimal flow rates when imposing increasing retention factors. Upon measuring the surface area involved in chromatographic retention as an indicator of the available surface area, an increase in the surface area by a factor of about 30 compared to that of non-anodized pillars was found. On reconfiguring a commercial HPLC instrument to enable on-chip injections, 90% of the performance (expressed in theoretical plates) could be maintained for a 1 m column, while for a 25 cm column severe losses were still observed. As the corresponding pressure drop for optimal operation of retained components is on the order of 10 bar per m only, portable and cheaper HPLC devices with high efficiencies become realistically conceivable.

Details

ISSN :
00032654
Database :
OpenAIRE
Journal :
Vrije Universiteit Brussel, Analyst, 139(3), 618-625. Royal Society of Chemistry
Accession number :
edsair.doi.dedup.....1a4a40270b1f3949144b3491ed213140