Back to Search Start Over

Propagation of Coherent States through Conical Intersections

Authors :
Kammerer, Clotilde Fermanian
Gamble, Stephanie
Hari, Lysianne
Laboratoire Analyse et Mathématiques Appliquées (LAMA)
Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
Department of Mathematics, Virginia Tech [Blacksburg]
Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB)
Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
CNRS 80|Prime program AlgDynQua
Projet Région Bourgogne Franche-Comté - ANER - ClePh-M.
ANR-18-CE40-0028,ESSED,Etudes de solutions spéciales pour des équations dispersives(2018)
Université de Bourgogne (UB)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

In this paper, we analyze the propagation of a wave packet through a conical intersection. This question has been addressed for Gaussian wave packets in the 90s by George Hagedorn and we consider here a more general setting. We focus on the case of Schr{\"o}dinger equation but our methods are general enough to be adapted to systems presenting codimension 2 crossings and to codimension 3 ones with specific geometric conditions. Our main Theorem gives explicit transition formulas for the profiles when passing through a conical crossing point, including precise computation of the transformation of the phase. Its proof is based on a normal form approach combined with the use of superadiabatic projectors and the analysis of their degeneracy close to the crossing.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....1a3dcc1793f64a203678e30832d95079