Back to Search Start Over

Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images

Authors :
Qiang Zhang
Sheng Zhang
Yi Pan
Lin Sun
Jianxin Li
Yu Qiao
Jing Zhao
Xiaoqing Wang
Yixing Feng
Yanhui Zhao
Zhiming Zheng
Xiangming Yang
Lixia Liu
Chunxin Qin
Ke Zhao
Xiaonan Liu
Caixia Li
Liuyang Zhang
Chunrui Yang
Na Zhuo
Hong Zhang
Jie Liu
Jinglei Gao
Xiaoling Di
Fanbo Meng
Linlei Zhang
Yuxuan Wang
Yuansheng Duan
Hongru Shen
Yang Li
Meng Yang
Yichen Yang
Xiaojie Xin
Xi Wei
Xuan Zhou
Rui Jin
Lun Zhang
Xudong Wang
Fengju Song
Xiangqian Zheng
Ming Gao
Kexin Chen
Xiangchun Li
Source :
Nature Communications. 13
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Hashimoto’s thyroiditis (HT) is the main cause of hypothyroidism. We develop a deep learning model called HTNet for diagnosis of HT by training on 106,513 thyroid ultrasound images from 17,934 patients and test its performance on 5051 patients from 2 datasets of static images and 1 dataset of video data. HTNet achieves an area under the receiver operating curve (AUC) of 0.905 (95% CI: 0.894 to 0.915), 0.888 (0.836–0.939) and 0.895 (0.862–0.927). HTNet exceeds radiologists’ performance on accuracy (83.2% versus 79.8%; binomial test, p p p = 0.004) and static-image (AUC, 0.914 versus 0.901; p = 0.08) testing sets, respectively. HTNet may be helpful as a tool for the management of HT.

Details

ISSN :
20411723
Volume :
13
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....1a2420c8d257672052b0f776cb44e853
Full Text :
https://doi.org/10.1038/s41467-022-31449-3