Back to Search
Start Over
Vanishing and non-vanishing theta values
- Source :
- Annales mathématiques du Québec, Annales mathématiques du Québec, 2013, 37 (1), pp.45-61, Annales mathématiques du Québec, Springer, 2013, 37 (1), pp.45-61
- Publication Year :
- 2013
- Publisher :
- Springer Science and Business Media LLC, 2013.
-
Abstract
- For a primitive Dirichlet character $$\chi $$ of conductor $$N$$ set $$\begin{aligned} \Theta (\chi )=\sum _{n\in \mathbb Z } n^\epsilon \chi (n)\,e^{-\pi n^2/N} \end{aligned}$$ (where $$\epsilon =0$$ for $$\chi $$ even, $$\epsilon =1$$ for $$\chi $$ odd), the value of the associated theta series at its point of symmetry under the modular transformation $$\tau \rightarrow -1/\tau $$ . These numbers are related by $$\Theta (\chi )=W(\chi )\Theta (\bar{\chi })$$ to the root number of the $$L$$ -series of $$\chi $$ and hence can be used to calculate the latter quickly if they do not vanish. We describe experiments showing that $$\Theta (\chi )\ne 0$$ for all $$\chi $$ with $$N\le 52{,}100$$ (roughly 500 million primitive characters) except for precisely two characters (up to $$\chi \rightarrow \bar{\chi }$$ ), of conductors $$300$$ and $$600$$ . The proof that $$\Theta (\chi )$$ vanishes in these two cases uses properties of Ramanujan’s modular function of level $$5$$ . We also characterize all $$\chi $$ for which $$W(\chi )$$ is a root of unity and describe some experimental results concerning the algebraic numbers $$\Theta (\chi )/\eta (i)^{1+2\epsilon }$$ when $$N$$ is prime.
- Subjects :
- Pure mathematics
Series (mathematics)
Root of unity
General Mathematics
010102 general mathematics
Modular form
01 natural sciences
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Dirichlet character
Ramanujan's sum
Combinatorics
symbols.namesake
Number theory
Gauss sum
0103 physical sciences
symbols
010307 mathematical physics
0101 mathematics
Algebraic number
ComputingMilieux_MISCELLANEOUS
Mathematics
Subjects
Details
- ISSN :
- 21954763 and 21954755
- Volume :
- 37
- Database :
- OpenAIRE
- Journal :
- Annales mathématiques du Québec
- Accession number :
- edsair.doi.dedup.....19ffc06035efc5f993a882b6f71b98e3