Back to Search Start Over

Vanishing and non-vanishing theta values

Authors :
Henri Cohen
Don Zagier
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Lithe and fast algorithmic number theory (LFANT)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Max-Planck-Institut für Mathematik (MPI)
European Project: 278537,EC:FP7:ERC,ERC-2011-StG_20101014,ANTICS(2012)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Source :
Annales mathématiques du Québec, Annales mathématiques du Québec, 2013, 37 (1), pp.45-61, Annales mathématiques du Québec, Springer, 2013, 37 (1), pp.45-61
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

For a primitive Dirichlet character $$\chi $$ of conductor $$N$$ set $$\begin{aligned} \Theta (\chi )=\sum _{n\in \mathbb Z } n^\epsilon \chi (n)\,e^{-\pi n^2/N} \end{aligned}$$ (where $$\epsilon =0$$ for $$\chi $$ even, $$\epsilon =1$$ for $$\chi $$ odd), the value of the associated theta series at its point of symmetry under the modular transformation $$\tau \rightarrow -1/\tau $$ . These numbers are related by $$\Theta (\chi )=W(\chi )\Theta (\bar{\chi })$$ to the root number of the $$L$$ -series of $$\chi $$ and hence can be used to calculate the latter quickly if they do not vanish. We describe experiments showing that $$\Theta (\chi )\ne 0$$ for all $$\chi $$ with $$N\le 52{,}100$$ (roughly 500 million primitive characters) except for precisely two characters (up to $$\chi \rightarrow \bar{\chi }$$ ), of conductors $$300$$ and $$600$$ . The proof that $$\Theta (\chi )$$ vanishes in these two cases uses properties of Ramanujan’s modular function of level $$5$$ . We also characterize all $$\chi $$ for which $$W(\chi )$$ is a root of unity and describe some experimental results concerning the algebraic numbers $$\Theta (\chi )/\eta (i)^{1+2\epsilon }$$ when $$N$$ is prime.

Details

ISSN :
21954763 and 21954755
Volume :
37
Database :
OpenAIRE
Journal :
Annales mathématiques du Québec
Accession number :
edsair.doi.dedup.....19ffc06035efc5f993a882b6f71b98e3