Back to Search Start Over

Protection or susceptibility to devastating childhood epilepsy: Nodding Syndrome associates with immunogenetic fingerprints in the HLA binding groove

Authors :
Gil Benedek
Mila Rivkin
Mia Levite
Shimon Edvardson
Richard Lako
Ally Ahmed Ramadhan Lasu
Sagit-Arbel Alon
Eithan Galun
Lul P. Riek
Keren Miller
Mahmoud Abed El Latif
Source :
PLoS Neglected Tropical Diseases, PLoS Neglected Tropical Diseases, Vol 14, Iss 7, p e0008436 (2020)
Publication Year :
2020
Publisher :
Public Library of Science, 2020.

Abstract

Nodding syndrome (NS) is a devastating and enigmatic childhood epilepsy. NS is accompanied by multiple neurological impairments and neuroinflammation, and associated with the parasite Onchocerca volvulus (Ov) and other environmental factors. Moreover, NS seems to be an ‘Autoimmune Epilepsy’ since: 1. ~50% of NS patients have neurotoxic cross-reactive Ov/Leimodin-I autoimmune antibodies. 2. Our recently published findings: Most (~86%) of NS patients have glutamate-receptor AMPA-GluR3B peptide autoimmune antibodies that bind, induce Reactive Oxygen Species, and kill both neural cells and T cells. Furthermore, NS patient’s IgG induce seizures, brain multiple damage alike occurring in brains of NS patients, and elevation of T cells and activated microglia and astrocytes, in brains of normal mice. Human Leukocyte antigen (HLA) class I and II molecules are critical for initiating effective beneficial immunity against foreign microorganisms and contributing to proper brain function, but also predispose to detrimental autoimmunity against self-peptides. We analyzed seven HLA loci, either by next-generation-sequencing or Sequence-Specific-Oligonucleotide-Probe, in 48 NS patients and 51 healthy controls from South Sudan. We discovered that NS associates significantly with both protective HLA haplotype: HLA-B*42:01, C*17:01, DRB1*03:02, DQB1*04:02 and DQA1*04:01, and susceptible motif: Ala24, Glu63 and Phe67, in the HLA-B peptide-binding groove. These amino acids create a hydrophobic and sterically closed peptide-binding HLA pocket, favoring proline residue. Our findings suggest that immunogenetic fingerprints in HLA peptide-binding grooves tentatively associate with protection or susceptibility to NS. Accordingly, different HLA molecules may explain why under similar environmental factors, only some children, within the same families, tribes and districts, develop NS, while others do not.<br />Author summary Nodding syndrome (NS) is a devastating and mysterious neurological disorder affecting 5–15 years old children, primarily in Sudan, Uganda and Tanzania. NS strongly associates with an infection with the parasitic worm Oncocherca Volvulus (Ov), transmitted by the black fly, affecting many people worldwide. Moreover, NS is most probably an 'Autoimmune Epilepsy', especially in view of our recent findings that NS patient’s autoimmune GluR3B antibodies induce ROS and kill both neural cells and T cells. NS patient’s IgG also induce seizures, multiple brain damage and inflammation-inducing cells in the brain. HLA class I genes are expressed on the surface of all nucleated cells and present peptides to cytotoxic CD8+ T cells. HLA class II genes are expressed mainly on the surface of antigen presenting cells and present peptides to helper CD4+ T cells. Analysis of HLA of South-Sudanese NS patients and healthy controls revealed that that few amino acids in HLA peptide-binding grooves associate with either protection or susceptibility to NS. Theses amino acids could be critical in NS by affecting beneficial immunity and/or detrimental autoimmunity.

Details

Language :
English
ISSN :
19352735 and 19352727
Volume :
14
Issue :
7
Database :
OpenAIRE
Journal :
PLoS Neglected Tropical Diseases
Accession number :
edsair.doi.dedup.....19ddc5731a2cf40f1cffe532a4e14fd7