Back to Search
Start Over
The Witt vectors for Green functors
- Source :
- Journal of Algebra. 537:197-244
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- We define twisted Hochschild homology for Green functors. This construction is the algebraic analogue of the relative topological Hochschild homology $THH_{C_n}(-)$, and it describes the $E_2$ term of the K\"unneth spectral sequence for relative $THH$. Applied to ordinary rings, we obtain new algebraic invariants. Extending Hesselholt's construction of the Witt vectors of noncommutative rings, we interpret our construction as providing Witt vectors for Green functors.<br />Comment: Minor revisions. Published version
- Subjects :
- Pure mathematics
Algebra and Number Theory
Functor
Hochschild homology
010102 general mathematics
K-Theory and Homology (math.KT)
Group Theory (math.GR)
Mathematics::Algebraic Topology
01 natural sciences
Noncommutative geometry
Invariant theory
Mathematics::K-Theory and Homology
Mathematics - K-Theory and Homology
0103 physical sciences
Spectral sequence
FOS: Mathematics
Algebraic Topology (math.AT)
Mathematics - Algebraic Topology
010307 mathematical physics
0101 mathematics
Algebraic number
Mathematics - Group Theory
Witt vector
Mathematics
Flatness (mathematics)
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 537
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....19d5b1150771d6449fead2606fe7bdca
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2019.07.014