Back to Search Start Over

Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes

Authors :
Frank Sohl
Mikhail Yu. Zolotov
Mathieu Choukroun
Robert T. Pappalardo
Jun Kimura
Steve Vance
Jeffrey S. Kargel
Source :
Satellites of the Outer Solar System ISBN: 9781441974389
Publication Year :
2010
Publisher :
Springer Science and Business Media LLC, 2010.

Abstract

The state of knowledge about the structure and composition of icy satellite interiors has been significantly extended by combining direct measurements from spacecraft, laboratory experiments, and theoretical modeling. The existence of potentially habitable liquid water reservoirs on icy satellites is dependent on the radiogenic heating of the rock component, additional contributions such as the dissipation of tidal energy, the efficiency of heat transfer to the surface, and the presence of substances that deplete the freezing point of liquid water. This review summarizes the chemical evolution of subsurface liquid water oceans, taking into account a number of chemical processes occuring in aqueous environments and partly related to material exchange with the deep interior. Of interest are processes occuring at the transitions from the liquid water layer to the ice layers above and below, involving the possible formation of clathrate hydrates and high-pressure ices on large icy satellites. In contrast, water-rock exchange is important for the chemical evolution of the liquid water layer if the latter is in contact with ocean floor rock on small satellites. The composition of oceanic floor deposits depends on ambient physical conditions and ocean chemistry, and their evolutions through time. In turn, physical properties of the ocean floor affect the circulation of oceanic water and related thermal effects due to tidally-induced porous flow and aqueous alteration of ocean floor rock.

Details

ISBN :
978-1-4419-7438-9
ISSN :
15729672 and 00386308
ISBNs :
9781441974389
Volume :
153
Database :
OpenAIRE
Journal :
Space Science Reviews
Accession number :
edsair.doi.dedup.....19b973b06af2ffe970c5f5d5e7fc55b1