Back to Search Start Over

Hexagonal Tungsten Bronze H0.25Cs0.25Nb2.5W2.5O14 as a Negative Electrode Material for Li-Ion Batteries

Authors :
Etienne Le Calvez
Julio César Espinosa-Angeles
Éric Gautron
Éric Quarez
Olivier Crosnier
Thierry Brousse
Institut des Matériaux Jean Rouxel (IMN)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST)
Nantes Université - pôle Sciences et technologie
Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie
Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - Ecole Polytechnique de l'Université de Nantes (Nantes Univ - EPUN)
Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
Réseau sur le stockage électrochimique de l'énergie (RS2E)
Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
Université de Montpellier (UM)
ANR-16-IDEX-0007,NExT (I-SITE),NExT (I-SITE)(2016)
ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010)
Source :
Chemistry of Materials, Chemistry of Materials, 2023, 35 (8), pp.3162-3171. ⟨10.1021/acs.chemmater.2c03797⟩
Publication Year :
2023
Publisher :
American Chemical Society (ACS), 2023.

Abstract

International audience; Oxides derived from the ReO3 structure, such as bronzes or Wadsley-Roth phases, have re-emerged from the past as they offer very attractive properties as negative electrodes for high-power Li-ion batteries. Here, we revisit the hexagonal bronze Cs0.5Nb2.5W2.5O14 and its protonated H0.25Cs0.25Nb2.5W2.5O14 derivative, which was newly obtained after ion exchange. A panel of characterization techniques (HAADF-STEM imaging, EDX mapping, and XRD) revealed a specific cation ordering in the material and a preferential ion exchange in the heptagonal tunnels of this oxide. When used as Li-ion battery electrodes, H0.25Cs0.25Nb2.5W2.5O14 exhibits higher specific capacities as well as better capacity retention at high currents than Cs0.5Nb2.5W2.5O14. The protonated phase provides specific capacities of 132 and 111 mAh center dot g-1 at, respectively, 0.02 and 0.2 A center dot g-1. Kinetic analysis reveals that the good capacity at a high rate is due to favorable diffusion of lithium ions into the tunnels of H0.25Cs0.25Nb2.5W2.5O14. In addition, using in situ XRD, a solid solution mechanism occurring during lithium insertion was proposed, as well as the different lithiation sites of the material.

Details

ISSN :
15205002 and 08974756
Volume :
35
Database :
OpenAIRE
Journal :
Chemistry of Materials
Accession number :
edsair.doi.dedup.....19afe1826da06c99d413a5918560af29
Full Text :
https://doi.org/10.1021/acs.chemmater.2c03797