Back to Search Start Over

Sodium P-Aminosalicylic Acid Improved Manganese-Induced Learning and Memory Dysfunction via Restoring the Ultrastructural Alterations and γ-Aminobutyric Acid Metabolism Imbalance in the Basal Ganglia

Authors :
Chao-Yan Ou
Yi-Ni Luo
Hai-Lan Luo
Yueming Jiang
Sheng-Nan He
Shao-Jun Li
Zong-Xiang Yuan
Yu-Huan Mo
Xiang-Fa Deng
Hao-Yang Meng
Source :
Biological Trace Element Research. 176:143-153
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Excessive intake of manganese (Mn) may cause neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has been used successfully in the treatment of Mn-induced neurotoxicity. The γ-aminobutyric acid (GABA) is related with learning and memory abilities. However, the mechanism of PAS-Na on improving Mn-induced behavioral deficits is unclear. The current study was aimed to investigate the effects of PAS-Na on Mn-induced behavioral deficits and the involvement of ultrastructural alterations and γ-aminobutyric acid (GABA) metabolism in the basal ganglia of rats. Sprague-Dawley rats received daily intraperitoneally injections of 15 mg/kg MnCl2.4H2O, 5d/week for 4 weeks, followed by a daily back subcutaneously (sc.) dose of PAS-Na (100 and 200 mg/kg), 5 days/week for another 3 or 6 weeks. Mn exposure for 4 weeks and then ceased Mn exposure for 3 or 6 weeks impaired spatial learning and memory abilities, and these effects were long-lasting. Moreover, Mn exposure caused ultrastructural alterations in the basal ganglia expressed as swollen neuronal with increasing the electron density in the protrusions structure and fuzzed the interval of neuropil, together with swollen, focal hyperplasia, and hypertrophy of astrocytes. Additionally, the results also indicated that Mn exposure increased Glu/GABA values as by feedback loops controlling GAT-1, GABAA mRNA and GABAA protein expression through decreasing GABA transporter 1(GAT-1) and GABA A receptor (GABAA) mRNA expression, and increasing GABAA protein expression in the basal ganglia. But Mn exposure had no effects on GAT-1 protein expression. PAS-Na treatment for 3 or 6 weeks effectively restored the above-mentioned adverse effects induced by Mn. In conclusion, these findings suggest the involvement of GABA metabolism and ultrastructural alterations of basal ganglia in PAS-Na’s protective effects on the spatial learning and memory abilities.

Details

ISSN :
15590720 and 01634984
Volume :
176
Database :
OpenAIRE
Journal :
Biological Trace Element Research
Accession number :
edsair.doi.dedup.....19acf110e47d13efe79dcfb5f01bbf17