Back to Search Start Over

Progress in DIII-D towards validating divertor power exhaust predictions

Authors :
S.L. Allen
Huiqian Wang
A.E. Jaervinen
Anthony Leonard
T.D. Rognlien
Adam McLean
David Eldon
M. Groth
C.J. Lasnier
J.G. Watkins
M.E. Fenstermacher
D. N. Hill
Cameron Samuell
G.D. Porter
Auna Moser
Fusion and Plasma Physics
Department of Applied Physics
Aalto-yliopisto
Aalto University
Source :
Järvinen, A, Allen, S L, Eldon, D, Fenstermacher, M E, Groth, M, Hill, D N, Lasnier, C J, Leonard, A W, McLean, A G, Moser, A L, Porter, G D, Rognlien, T D, Samuell, C M, Wang, H Q & Watkins, J G 2020, ' Progress in DIII-D towards validating divertor power exhaust predictions ', Nuclear Fusion, vol. 60, no. 5, 056021 . https://doi.org/10.1088/1741-4326/ab7f5c
Publication Year :
2020

Abstract

UEDGE simulations highlight the role of cross-field drifts on the onset of detached conditions, and new calibrated divertor vacuum ultra violet (VUV) spectroscopy is used to challenge the predictions of radiative constituents in these simulations. UEDGE simulations for DIII-D H-mode plasmas with the open divertor with the ion ∇B-drift towards the X-point show a bifurcated onset of the low field side (LFS) divertor detachment, consistent with experimentally observed step-like detachment onset (Jaervinen A.E. et al 2018 Phys. Rev. Lett. 121 075001). The divertor plasma in the simulations exhibits hysteresis in upstream separatrix density between attached and detached solution branches. Reducing the drift magnitude by a factor of 3 eliminates the step-like detachment onset in the simulations, confirming the strong role of drifts in the bifurcated detachment onset. When measured local plasma densities and temperatures are within proximity of predicted values in the simulations, there is no shortfall of the local emission of the dominant resonant radiating lines. However, the simulations systematically predict a factor of two lower total integrated radiated power than measured by the bolometer with the difference lost through radial heat flow out of the computational domain. Even though there is no shortfall in the emission of the dominant lines, a shortfall of total radiated power can be caused by underpredicted spatial extent of the radiation front, indicating a potential upstream or divertor transport physics origin for the radiation shortfall, or shortfall of radiated power in the spectrum between the dominant lines. In addition to the underpredicted spatial extent, in detached conditions, the simulations overpredict the peak radiation and dominant carbon lines near the X-point, which can be alleviated by manually increasing divertor diffusivity in the simulations, highlighting the ad hoc cross-field transport as one of the key limitations of the predictive capability of these divertor fluid codes.

Details

Language :
English
Database :
OpenAIRE
Journal :
Järvinen, A, Allen, S L, Eldon, D, Fenstermacher, M E, Groth, M, Hill, D N, Lasnier, C J, Leonard, A W, McLean, A G, Moser, A L, Porter, G D, Rognlien, T D, Samuell, C M, Wang, H Q & Watkins, J G 2020, ' Progress in DIII-D towards validating divertor power exhaust predictions ', Nuclear Fusion, vol. 60, no. 5, 056021 . https://doi.org/10.1088/1741-4326/ab7f5c
Accession number :
edsair.doi.dedup.....1981f118147bd04c6b9530c1848dde55
Full Text :
https://doi.org/10.1088/1741-4326/ab7f5c