Back to Search Start Over

Discriminative feature of cells characterizes cell populations of interest by a small subset of genes

Authors :
Masatoshi Fujita
Yasuyuki Ohkawa
Takeru Fujii
Kazumitsu Maehara
Source :
PLoS Computational Biology, Vol 17, Iss 11, p e1009579 (2021), PLoS Computational Biology
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

Organisms are composed of various cell types with specific states. To obtain a comprehensive understanding of the functions of organs and tissues, cell types have been classified and defined by identifying specific marker genes. Statistical tests are critical for identifying marker genes, which often involve evaluating differences in the mean expression levels of genes. Differentially expressed gene (DEG)-based analysis has been the most frequently used method of this kind. However, in association with increases in sample size such as in single-cell analysis, DEG-based analysis has faced difficulties associated with the inflation of P-values. Here, we propose the concept of discriminative feature of cells (DFC), an alternative to using DEG-based approaches. We implemented DFC using logistic regression with an adaptive LASSO penalty to perform binary classification for discriminating a population of interest and variable selection to obtain a small subset of defining genes. We demonstrated that DFC prioritized gene pairs with non-independent expression using artificial data and that DFC enabled characterization of the muscle satellite/progenitor cell population. The results revealed that DFC well captured cell-type-specific markers, specific gene expression patterns, and subcategories of this cell population. DFC may complement DEG-based methods for interpreting large data sets. DEG-based analysis uses lists of genes with differences in expression between groups, while DFC, which can be termed a discriminative approach, has potential applications in the task of cell characterization. Upon recent advances in the high-throughput analysis of single cells, methods of cell characterization such as scRNA-seq can be effectively subjected to the discriminative methods.<br />Author summary Statistical methods for detecting differences in individual gene expression are indispensable for understanding cell types. However, conventional statistical methods, such as differentially expressed gene (DEG)-based analysis, have faced difficulties associated with the inflation of P-values because of both the large sample size and selection bias introduced by exploratory data analysis such as single-cell transcriptomics. Here, we propose the concept of discriminative feature of cells (DFC), an alternative to using DEG-based approaches. We implemented DFC using logistic regression with an adaptive LASSO penalty to perform binary classification for the discrimination of a population of interest and variable selection to obtain a small subset of defining genes. We demonstrated that DFC prioritized gene pairs with non-independent expression using artificial data, and that it enabled characterization of the muscle satellite/progenitor cell population. The results revealed that DFC well captured cell-type-specific markers, specific gene expression patterns, and subcategories of this cell population. DFC may complement differentially expressed gene-based methods for interpreting large data sets.

Details

Language :
English
ISSN :
15537358
Volume :
17
Issue :
11
Database :
OpenAIRE
Journal :
PLoS Computational Biology
Accession number :
edsair.doi.dedup.....19766dd64db55c81c6fd2a32573beb7a