Back to Search
Start Over
Null pseudo-isotropic Lagrangian surfaces
- Source :
- Colloquium Mathematicum, Colloquium Mathematicum, 2017, 150 (1), pp.87-101. ⟨10.4064/cm7107s-12-2016⟩, idUS. Depósito de Investigación de la Universidad de Sevilla, instname
- Publication Year :
- 2016
- Publisher :
- arXiv, 2016.
-
Abstract
- In this paper we will show that a Lagrangian, Lorentzian surface $M^2_1$ in a complex pseudo space form $\widetilde M^2_1 (4c)$ is pseudo-isotropic if and only if $M$ is minimal. Next we will obtain a complete classification of all Lagrangian, Lorentzian surfaces which are lightlike pseudo-isotropic but not pseudo-isotropic.<br />Comment: 15 pages
- Subjects :
- Surface (mathematics)
Mathematics - Differential Geometry
General Mathematics
01 natural sciences
Isotropic submanifold
complex projective space
symbols.namesake
General Relativity and Quantum Cosmology
Lorentzian submanifold
FOS: Mathematics
0101 mathematics
[MATH]Mathematics [math]
Mathematical physics
Mathematics
Complex projective space
010102 general mathematics
Isotropy
Null (mathematics)
Space form
010101 applied mathematics
isotropic sub-manifold
Differential Geometry (math.DG)
Lagrangian submanifold
53B25, 53B20
symbols
Mathematics::Differential Geometry
Lagrangian
Subjects
Details
- ISSN :
- 00101354
- Database :
- OpenAIRE
- Journal :
- Colloquium Mathematicum, Colloquium Mathematicum, 2017, 150 (1), pp.87-101. ⟨10.4064/cm7107s-12-2016⟩, idUS. Depósito de Investigación de la Universidad de Sevilla, instname
- Accession number :
- edsair.doi.dedup.....1969bac2da31cdc5ac021e6cdb01d458
- Full Text :
- https://doi.org/10.48550/arxiv.1610.01396