Back to Search Start Over

Fullerene bisadduct stabilizers: The effect of different addition positions on inhibiting the autocatalytic decomposition of nitrocellulose absorbed nitroglycerin

Authors :
Fei Xian
Rufang Peng
Zhicheng Guo
Ling Liao
Bo Jin
Chen-jie Hou
Source :
Defence Technology, Vol 17, Iss 6, Pp 1944-1953 (2021)
Publication Year :
2021
Publisher :
KeAi Communications Co., Ltd., 2021.

Abstract

To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose (NC)/nitroglycerine (NG), we synthesized N-(4-methoxy) phenylpyrrolidine-C60 and four different of bis(N-(4-methoxy) phenylpyrrolidine)-C60 compounds through Prato reaction. Their structures were characterized by UV–vis, 1H NMR, 13C NMR, high-resolution mass spectroscopy, and single-crystal X-ray diffraction. Their stabilization effect to NC/NG were investigated using differential scanning calorimetry, methyl violet, vacuum stabilization effect, weight loss, and accelerating rate calorimeter tests. The results indicated these compounds had excellent stabilization effect to NC/NG. The stabilization effect of the fulleropyrrolidine bisadducts to NC/NG is significantly better than that of fulleropyrrolidine monoadduct and C60. Moreover, the position where pyrrolidine binds to fullerene in fulleropyrrolidine bisadducts is different, and its stabilization effect to NC is also different. The stabilization effect order of different bisadduct isomers to nitrocellulose is as follows: e-edge > trans-2> cis-2> trans-3. Electron paramagnetic resonance (EPR) and FT-IR were used to study the stabilization mechanism of fulleropyrrolidine derivatives to NC/NG. The EPR results also show that fulleropyrrolidine bisadducts with different addition sites have different abilities to absorb nitroxide, and their ability is better than that of the monoadduct and C60, which is consistent with the results of stabilization effect performance test.

Details

Language :
English
ISSN :
22149147
Volume :
17
Issue :
6
Database :
OpenAIRE
Journal :
Defence Technology
Accession number :
edsair.doi.dedup.....1969a3c07b97dbc06794584ecc0094a9