Back to Search
Start Over
Testing the Unification Model for AGN in the Infrared: are the obscuring tori of Type 1 and 2 Seyferts different?
- Publication Year :
- 2011
- Publisher :
- arXiv, 2011.
-
Abstract
- We present new mid-infrared (MIR) imaging data for three Type-1 Seyfert galaxies obtained with T-ReCS on the Gemini-South Telescope at subarcsecond resolution. Our aim is to enlarge the sample studied in a previous work to compare the properties of Type-1 and Type-2 Seyfert tori using clumpy torus models and a Bayesian approach to fit the infrared nuclear spectral energy distributions (SEDs). Thus, the sample considered here comprises 7 Type-1, 11 Type-2, and 3 intermediate-type Seyferts. The unresolved IR emission of the Seyfert 1 galaxies can be reproduced by a combination of dust heated by the central engine and direct AGN emission, while for the Seyfert 2 nuclei only dust emission is considered. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Unification schemes of AGN account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Type-1 and Type-2 Seyfert nuclei are intrinsically different. The Type-2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type-1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Seyfert 2 tori have larger covering factors and smaller escape probabilities than those of Seyfert 1. All the previous differences are significant according to the Kullback-Leibler divergence. Thus, on the basis of the results presented here, the classification of a Seyfert galaxy as a Type-1 or Type-2 depends more on the intrinsic properties of the torus rather than on its mere inclination towards us, in contradiction with the simplest unification model.<br />Comment: 21 pages, 14 figures, Appendix including supplementary figures. Accepted by ApJ
- Subjects :
- Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Astrophysics::High Energy Astrophysical Phenomena
Astrophysics of Galaxies (astro-ph.GA)
FOS: Physical sciences
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics - Astrophysics of Galaxies
Astrophysics::Galaxy Astrophysics
Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....1945da96d7be0fe5b84adfbb82455e24
- Full Text :
- https://doi.org/10.48550/arxiv.1101.3335