Back to Search
Start Over
3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration
- Source :
- Polymers, Vol 13, Iss 1099, p 1099 (2021), Polymers, Volume 13, Issue 7
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Current strategies for regeneration of large bone fractures yield limited clinical success mainly due to poor integration and healing. Multidisciplinary approaches in design and development of functional tissue engineered scaffolds are required to overcome these translational challenges. Here, a new generation of hyperelastic bone (HB) implants, loaded with superparamagnetic iron oxide nanoparticles (SPIONs), are 3D bioprinted and their regenerative effect on large non-healing bone fractures is studied. Scaffolds are bioprinted with the geometry that closely correspond to that of the bone defect, using an osteoconductive, highly elastic, surgically friendly bioink mainly composed of hydroxyapatite. Incorporation of SPIONs into HB bioink results in enhanced bacteriostatic properties of bone grafts while exhibiting no cytotoxicity. In vitro culture of mouse embryonic cells and human osteoblast-like cells remain viable and functional up to 14 days on printed HB scaffolds. Implantation of damage-specific bioprinted constructs into a rat model of femoral bone defect demonstrates significant regenerative effect over the 2-week time course. While no infection, immune rejection, or fibrotic encapsulation is observed, HB grafts show rapid integration with host tissue, ossification, and growth of new bone. These results suggest a great translational potential for 3D bioprinted HB scaffolds, laden with functional nanoparticles, for hard tissue engineering applications.
- Subjects :
- Polymers and Plastics
Superparamagnetic iron oxide nanoparticles
damage-specific scaffold
hyperelastic bone
0206 medical engineering
02 engineering and technology
Host tissue
Article
lcsh:QD241-441
Tissue engineering
lcsh:Organic chemistry
medicine
Bone regeneration
large bone fracture
Chemistry
Ossification
Regeneration (biology)
superparamagnetic iron oxide nanoparticles
Bone scaffold
General Chemistry
021001 nanoscience & nanotechnology
020601 biomedical engineering
Embryonic stem cell
antibacterial
tissue engineering
bone 3D bioprinting
medicine.symptom
0210 nano-technology
Biomedical engineering
Subjects
Details
- Language :
- English
- ISSN :
- 20734360
- Volume :
- 13
- Issue :
- 1099
- Database :
- OpenAIRE
- Journal :
- Polymers
- Accession number :
- edsair.doi.dedup.....19400bd2ecef0519e9ab6396cba16975