Back to Search
Start Over
High-throughput multi-parallel enteropathogen quantification via nano-liter qPCR
- Publication Year :
- 2019
- Publisher :
- Cold Spring Harbor Laboratory, 2019.
-
Abstract
- Quantitative molecular diagnostic methods, such as qPCR, can effectively detect pathogen-specific nucleic acid sequences. However, costs associated with multi-pathogen quantitative molecular diagnostics hinder their widespread use. Nano-liter qPCR (nL-qPCR) is a miniaturized tool for quantification of multiple targets in large numbers of samples based on assay parallelization on a single chip, with potentially significant cost-savings due to rapid throughput and reduced reagent volumes. We evaluated a suite of novel and published assays to detect 17 enteric pathogens using a commercially available nL-qPCR technology. Assay efficiencies ranged from 88-98% (mean 91%) and were reproducible across four operators at two separate facilities. When applied to complex fecal material, assays were sensitive and selective (99.8% of DNA amplified were genes from the target organism). Detection limits were 1-2 orders of magnitude higher for nL-qPCR than an existing enteric TaqMan Array Card (TAC), due to nanofluidic volumes. Compared to the TAC, nL-qPCR displayed 97% (95% CI 0.96, 0.98) negative percent agreement and 63% (95% CI 0.60, 0.66) overall positive percent agreement. Positive percent agreement was 90% for target concentrations above the nL-qPCR detection limits. nL-qPCR assays showed an underestimation bias of 0.34 log10copies/gram of stool [IQR -0.41, -0.28] compared with the enteric TAC. Higher detection limits, inherent to nL-qPCR, do not hinder detection of clinically relevant pathogen concentrations. With 12 times higher throughput for a sixth of the per-sample cost of the enteric TAC, the nL-qPCR chip described here is a viable alternative for enteropathogen quantification for studies where other technologies are cost-prohibitive.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....192a1d663ed22b3a67b902c468e666ad
- Full Text :
- https://doi.org/10.1101/746446