Back to Search Start Over

Text2Poster: Laying out Stylized Texts on Retrieved Images

Authors :
Chuhao Jin
Hongteng Xu
Ruihua Song
Zhiwu Lu
Publication Year :
2023

Abstract

Poster generation is a significant task for a wide range of applications, which is often time-consuming and requires lots of manual editing and artistic experience. In this paper, we propose a novel data-driven framework, called \textit{Text2Poster}, to automatically generate visually-effective posters from textual information. Imitating the process of manual poster editing, our framework leverages a large-scale pretrained visual-textual model to retrieve background images from given texts, lays out the texts on the images iteratively by cascaded auto-encoders, and finally, stylizes the texts by a matching-based method. We learn the modules of the framework by weakly- and self-supervised learning strategies, mitigating the demand for labeled data. Both objective and subjective experiments demonstrate that our Text2Poster outperforms state-of-the-art methods, including academic research and commercial software, on the quality of generated posters.<br />5 pages, Accepted to ICASSP 2022

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....1910c36a1ddb568b25224c1ebfa4780c