Back to Search
Start Over
Text2Poster: Laying out Stylized Texts on Retrieved Images
- Publication Year :
- 2023
-
Abstract
- Poster generation is a significant task for a wide range of applications, which is often time-consuming and requires lots of manual editing and artistic experience. In this paper, we propose a novel data-driven framework, called \textit{Text2Poster}, to automatically generate visually-effective posters from textual information. Imitating the process of manual poster editing, our framework leverages a large-scale pretrained visual-textual model to retrieve background images from given texts, lays out the texts on the images iteratively by cascaded auto-encoders, and finally, stylizes the texts by a matching-based method. We learn the modules of the framework by weakly- and self-supervised learning strategies, mitigating the demand for labeled data. Both objective and subjective experiments demonstrate that our Text2Poster outperforms state-of-the-art methods, including academic research and commercial software, on the quality of generated posters.<br />5 pages, Accepted to ICASSP 2022
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....1910c36a1ddb568b25224c1ebfa4780c