Back to Search Start Over

Poincaré’s Equations for Cosserat Media: Application to Shells

Authors :
Frédéric Boyer
Federico Renda
Mines Nantes (Mines Nantes)
Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN)
Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN)
Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS)
Khalifa University for Science Technology [Abou Dabi]
Source :
Journal of Nonlinear Science, Journal of Nonlinear Science, Springer Verlag, 2016, pp.1-44. ⟨10.1007/s00332-016-9324-7⟩
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

International audience; In 1901 Henri Poincaré discovered a new set of equations for mechanics. These equations are a generalization of Lagrange's equations for a system whose configuration space is a Lie group which is not necessarily commutative. Since then, this result has been extensively refined through the Lagrangian reduction theory. In the present contribution, we extend these equations from classical mechanical systems to continuous Cosserat media, i.e. media in which the usual point particles are replaced by small rigid bodies, called micro-structures. In particular, we will see how the Shell balance equations used in nonlinear structural dynamics, can be easily derived from this extension of the Poincaré's result.

Details

ISSN :
14321467 and 09388974
Volume :
27
Database :
OpenAIRE
Journal :
Journal of Nonlinear Science
Accession number :
edsair.doi.dedup.....18f6043194155b79972d9e5d5ccc65b5
Full Text :
https://doi.org/10.1007/s00332-016-9324-7